Skip to main content

Derivative-Based Global Sensitivity Measures

  • Living reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

The method of derivative-based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol’ sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol’ sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol’ total sensitivity indices S i tot. Using these bounds it is possible in most cases to get a good practical estimation of the values of S i tot. Several examples are used to illustrate an application of DGSM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Campolongo, F., Braddock, R.: The use of graph theory in the sensitivity analysis of model output: a second order screening method. Reliab. Eng. Syst. Saf. 64, 1–12 (1999)

    Article  Google Scholar 

  3. Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007)

    Article  Google Scholar 

  4. Cropp, R., Braddock, R.: The new Morris method: an efficient second-order screening method. Reliab. Eng. Syst. Saf. 78, 77–83 (2002)

    Article  Google Scholar 

  5. De Lozzo, M., Marrel, A.: Estimation of the derivative-based global sensitivity measures using a Gaussian process metamodel, SIAM/ASA J. on Uncertain. Quantif. (2016, Accepted for publication)

    Google Scholar 

  6. Fédou, J.M., Rendas, M.J.: Extending Morris method: identification of the interaction graph using cycle-equitable designs. J. Stat. Comput. Simul. 85, 1398–1419 (2015)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J., Popescu, B.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fruth, J., Roustant, O., Kuhnt, S.: Total interaction index: a variance-based sensitivity index for second-order interaction screening. J. Stat. Plan. Inference 147, 212–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Automatic Differentiation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  10. Hardy, G., Littlewood, J., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, London (1988)

    MATH  Google Scholar 

  11. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of non linear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  12. Iooss, B., Popelin, A.L., Blatman, G., Ciric, C., Gamboa, F., Lacaze, S., Lamboni, M.: Some new insights in derivative-based global sensitivity measures. In: Proceedings of the PSAM11 ESREL 2012 Conference, Helsinki, pp. 1094–1104 (2012)

    Google Scholar 

  13. Jansen, K., Leovey, H., Nube, A., Griewank, A., Mueller-Preussker, M.: A first look of quasi-Monte Carlo for lattice field theory problems. Comput. Phys. Commun. 185, 948–959 (2014)

    Article  MathSciNet  Google Scholar 

  14. Jansen, M.: Analysis of variance designs for model output. Comput. Phys. Commun. 117, 25–43 (1999)

    Article  MATH  Google Scholar 

  15. Kiparissides, A., Kucherenko, S., Mantalaris, A., Pistikopoulos, E.: Global sensitivity analysis challenges in biological systems modeling. J. Ind. Eng. Chem. Res. 48, 1135–1148 (2009)

    Article  Google Scholar 

  16. Kucherenko, S., Song, S.: Derivative-based global sensitivity measures and their link with Sobol’ sensitivity indices. In: Cools, R., Nuyens, D. (eds.) Proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2014). Springer, Leuven (2015)

    Google Scholar 

  17. Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N.: Monte carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 94, 1135–1148 (2009)

    Article  Google Scholar 

  18. Lamboni, M.: New way of estimating total sensitivity indices. In: Proceedings of the 7th International Conference on Sensitivity Analysis of Model Output (SAMO 2013), Nice (2013)

    Google Scholar 

  19. Lamboni, M., Iooss, B., Popelin, A.L., Gamboa, F.: Derivative-based global sensitivity measures: general links with sobol’ indices and numerical tests. Math. Comput. Simul. 87, 45–54 (2013)

    Article  MathSciNet  Google Scholar 

  20. Liu, R., Owen, A.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morris, M.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991)

    Article  Google Scholar 

  22. Muehlenstaedt, T., Roustant, O., Carraro, L., Kuhnt, S.: Data-driven Kriging models based on FANOVA-decomposition. Stat. Comput. 22, 723–738 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Patelli, E., Pradlwarter, H.: Monte Carlo gradient estimation in high dimensions. Int. J. Numer. Methods Eng. 81, 172–188 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Patelli, E., Pradlwarter, H.J., Schuëller, G.I.: Global sensitivity of structural variability by random sampling. Comput. Phys. Commun. 181, 2072–2081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petit, S.: Analyse de sensibilité globale du module MASCARET par l’utilisation de la différentiation automatique. Rapport de stage de fin d’études de Supélec, EDF R&D, Chatou (2015)

    Google Scholar 

  26. Pujol, G.: Simplex-based screening designs for estimating metamodels. Reliab. Eng. Syst. Saf. 94, 1156–1160 (2009)

    Article  Google Scholar 

  27. Rodriguez-Fernandez, M., Banga, J., Doyle, F.: Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int. J. Robust Nonlinear Control 22, 1082–1102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roustant, O., Fruth, J., Iooss, B., Kuhnt, S.: Crossed-derivative-based sensitivity measures for interaction screening. Math. Comput. Simul. 105, 105–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)

    Article  MATH  Google Scholar 

  30. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global sensitivity analysis. The primer. Wiley, Chichester/Hoboken (2008)

    MATH  Google Scholar 

  31. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Santiago, J., Corre, B., Claeys-Bruno, M., Sergent, M.: Improved sensitivity through Morris extension. Chemom. Intell. Lab. Syst. 113, 52–57 (2012)

    Article  Google Scholar 

  33. Sobol, I.: Sensitivity estimates for non linear mathematical models (in Russian). Matematicheskoe Modelirovanie 2, 112–118 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Sobol, I.: Sensitivity estimates for non linear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Sobol, I.: Global sensitivity indices for non linear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sobol, I., Gershman, A.: On an alternative global sensitivity estimators. In: Proceedings of SAMO 1995, Belgirate, pp. 40–42 (1995)

    Google Scholar 

  37. Sobol, I., Kucherenko, S.: Global sensitivity indices for non linear mathematical models. Rev. Wilmott Mag. 1, 56–61 (2005)

    Article  Google Scholar 

  38. Sobol, I., Kucherenko, S.: Derivative based global sensitivity measures and their links with global sensitivity indices. Math. Comput. Simul. 79, 3009–3017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sobol, I., Kucherenko, S.: A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices. Comput. Phys. Commun. 181, 1212–1217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sudret, B., Mai, C.V.: Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 134, 241–250 (2015)

    Article  Google Scholar 

  41. Touzany, S., Busby, D.: Screening method using the derivative-based global sensitivity indices with application to reservoir simulator. Oil Gas Sci. Technol. Rev. IFP Energ. Nouvelles 69, 619–632 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kucherenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Kucherenko, S., Iooss, B. (2015). Derivative-Based Global Sensitivity Measures. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-11259-6_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11259-6_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-11259-6

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics