Skip to main content

Fetal Metabolic Programming

  • Reference work entry
  • First Online:
Metabolic Syndrome

Abstract

The global increase in the burden of metabolic-related disease, particularly obesity and type 2 diabetes, means that insights into factors contributing to such conditions are of increasing importance. Evidence from both human studies and animal models suggests that suboptimal conditions in early life may play a role in determining the risk of later metabolic dysfunction. Understanding how later metabolic dysfunction arises at least in part from the early-life environment could lead to exciting new routes to tackle adverse later-life outcomes, either in the index pregnancy via maternal intervention or early in the life of the offspring. Currently, our understanding of the mechanisms of developmental programming of metabolic dysfunction arises primarily from work in animal models, and much remains to be recapitulated and validated in human populations. An ability to tackle metabolic dysfunction early in life and to offset adverse programming of metabolism could prove protective to some degree against many later-life metabolic diseases. Of particular importance is the idea that adverse metabolic phenotypes may not only be seen in the offspring directly exposed to adverse conditions in utero but may also be transmitted or re-propagated across generations. This allows developmental programming of metabolic phenotypes to be viewed on a longer-term basis than a single generation and underscores the idea that early interventions to improve the intrauterine and early postnatal environment could have significant metabolic health benefits to both the children of affected individuals and to future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott DH, Bruns CR, Barnett DK, et al. Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring. Am J Physiol Endocrinol Metab. 2010;299(5):E741-E751.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abuzgaia AM, Hardy DB, Arany E. Regulation of postnatal pancreatic Pdx1 and downstream target genes after gestational exposure to protein restriction in rats. Reproduction. 2015;149(3):293-303.

    Article  CAS  PubMed  Google Scholar 

  • Aiken CE, Ozanne SE. Sex differences in developmental programming models. Reproduction. 2013;145(1):R1-R13.

    Article  CAS  PubMed  Google Scholar 

  • Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update. 2014;20(1):63-75.

    Article  PubMed  Google Scholar 

  • Aiken CE, Cindrova-Davies T, Johnson MH. Variations in mouse mitochondrial DNA copy number from fertilization to birth are associated with oxidative stress. Reprod Biomed Online. 2008;17(6):806-813.

    Article  CAS  PubMed  Google Scholar 

  • Aiken CE, Tarry-Adkins JL, Ozanne SE. Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract. FASEB J. 2013;27(10):3959-3965.

    Article  CAS  PubMed  Google Scholar 

  • Ainge H, Thompson C, Ozanne SE, et al. A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes (Lond). 2011;35(3):325-335.

    Article  CAS  Google Scholar 

  • Alejandro EU, Gregg B, Wallen T, et al. Maternal diet-induced microRNAs and mTOR underlie beta cell dysfunction in offspring. J Clin Invest. 2014;124(10):4395-4410.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alfaradhi MZ, Fernandez-Twinn DS, Martin-Gronert MS, et al. Oxidative stress and altered lipid homeostasis in the programming of offspring fatty liver by maternal obesity. Am J Physiol Regul Integr Comp Physiol. 2014;307(1):R26-R34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashino NG, Saito KN, Souza FD, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012;23(4):341-348.

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ. In utero programming of chronic disease. Clin Sci (Lond). 1998;95(2):115-128.

    Article  CAS  Google Scholar 

  • Bayol SA, Simbi BH, Fowkes RC, et al. A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring. Endocrinology. 2010;151(4):1451-1461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellinger L, Sculley DV, Langley-Evans SC. Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes (Lond). 2006;30(5):729-738.

    Article  CAS  Google Scholar 

  • Bispham J, Gardner DS, Gnanalingham MG, et al. Maternal nutritional programming of fetal adipose tissue development: differential effects on messenger ribonucleic acid abundance for uncoupling proteins and peroxisome proliferator-activated and prolactin receptors. Endocrinology. 2005;146(9):3943-3949.

    Article  CAS  PubMed  Google Scholar 

  • Blackmore HL, Niu Y, Fernandez-Twinn DS, et al. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology. 2014;155(10):3970-3980.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Borengasser SJ, Lau F, Kang P, et al. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning. PLoS One. 2011;6(8):e24068.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruce KD, Cagampang FR, Argenton M, et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009;50(6):1796-1808.

    Article  CAS  PubMed  Google Scholar 

  • Brumbaugh DE, Tearse P, Cree-Green M, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediatr. 2013;162(5):930-936.e931.

    Google Scholar 

  • Buckley AJ, Keseru B, Briody J, et al. Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism. 2005;54(4):500-507.

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Fowden AL. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta. 2012;33(Suppl):S23-S27.

    Article  PubMed  CAS  Google Scholar 

  • Cambonie G, Comte B, Yzydorczyk C, et al. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1236-R1245.

    Article  CAS  PubMed  Google Scholar 

  • Campion J, Milagro FI, Fernandez D, et al. Diferential gene expression and adiposity reduction induced by ascorbic acid supplementation in a cafeteria model of obesity. J Physiol Biochem. 2006;62(2):71-80.

    Article  CAS  PubMed  Google Scholar 

  • Cerf ME, Williams K, Chapman CS, et al. Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas. 2007;34(3):347-353.

    Article  CAS  PubMed  Google Scholar 

  • Chang GQ, Gaysinskaya V, Karatayev O, et al. Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci. 2008;28(46):12107-12119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YH, Nicholson RC, King B, et al. Glucocorticoid stimulation of corticotropin-releasing hormone gene expression requires a cyclic adenosine 3′,5′-monophosphate regulatory element in human primary placental cytotrophoblast cells. J Clin Endocrinol Metab. 2000;85(5):1937-1945.

    CAS  PubMed  Google Scholar 

  • Corstius HB, Zimanyi MA, Maka N, et al. Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res. 2005;57(6):796-800.

    Article  CAS  PubMed  Google Scholar 

  • Cottrell EC, Cripps RL, Duncan JS, et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R631-R639.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desai M, Gayle D, Babu J, et al. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R91-R96.

    Article  CAS  PubMed  Google Scholar 

  • Dong M, Zheng Q, Ford SP, et al. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J Mol Cell Cardiol. 2013;55:111-116.

    Article  CAS  PubMed  Google Scholar 

  • Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res. 1994;26(5):213-221.

    Article  CAS  PubMed  Google Scholar 

  • Duthie L, Reynolds RM. Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology. 2013;98(2):106-115.

    Article  CAS  PubMed  Google Scholar 

  • Ekelund U, Ong K, Linne Y, et al. Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr. 2006;83(2):324-330.

    CAS  PubMed  Google Scholar 

  • Entringer S. Impact of stress and stress physiology during pregnancy on child metabolic function and obesity risk. Curr Opin Clin Nutr Metab Care. 2013;16(3):320-327.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ezzahir N, Alberti C, Deghmoun S, et al. Time course of catch-up in adiposity influences adult anthropometry in individuals who were born small for gestational age. Pediatr Res. 2005;58(2):243-247.

    Article  PubMed  Google Scholar 

  • Farley D, Tejero ME, Comuzzie AG, et al. Feto-placental adaptations to maternal obesity in the baboon. Placenta. 2009;30(9):752-760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Ann N Y Acad Sci. 2010;1212:78-96.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Twinn DS, Blackmore HL, Siggens L, et al. The programming of cardiac hypertrophy in the offspring by maternal obesity is associated with hyperinsulinemia, AKT, ERK, and mTOR activation. Endocrinology. 2012;153(12):5961-5971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finer, S, Mathews, C, Lowe, R, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation In placenta and cord blood of exposed offspring. Hum Mol Genet. 2015.

    Google Scholar 

  • Fraser A, Tilling K, Macdonald-Wallis C, et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation. 2010;121(23):2557-2564.

    Article  PubMed Central  PubMed  Google Scholar 

  • Frias AE, Morgan TK, Evans AE, et al. Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition. Endocrinology. 2011;152(6):2456-2464.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752-1761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giussani DA, Camm EJ, Niu Y, et al. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One. 2012;7(2):e31017.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61-73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godfrey KM, Lillycrop KA, Burdge GC, et al. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61(5 Pt 2):5R-10R.

    Article  PubMed  Google Scholar 

  • Graus-Nunes F, Dalla Corte Frantz E, Lannes WR, et al. Pregestational maternal obesity impairs endocrine pancreas in male F1 and F2 progeny. Nutrition. 2015;31(2):380-387.

    Article  CAS  PubMed  Google Scholar 

  • Grayson BE, Levasseur PR, Williams SM, et al. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 2010;151(4):1622-1632.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenwood PL, Hunt AS, Hermanson JW, et al. Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. J Anim Sci. 1998;76(9):2354-2367.

    CAS  PubMed  Google Scholar 

  • Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595-601.

    Article  CAS  PubMed  Google Scholar 

  • Hans CP, Zerfaoui M, Naura AS, et al. Thieno[2,3-c]isoquinolin-5-one, a potent poly(ADP-ribose) polymerase inhibitor, promotes atherosclerotic plaque regression in high-fat diet-fed apolipoprotein E-deficient mice: effects on inflammatory markers and lipid content. J Pharmacol Exp Ther. 2009;329(1):150-158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haussmann MF, Winkler DW, O’Reilly KM, et al. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc Biol Sci. 2003;270(1522):1387-1392.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayes L, Bell R, Robson S, et al. Association between physical activity in obese pregnant women and pregnancy outcomes: the UPBEAT pilot study. Ann Nutr Metab. 2014;64(3-4):239-246.

    Article  PubMed  CAS  Google Scholar 

  • Herrera EA, Verkerk MM, Derks JB, et al. Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats. PLoS One. 2010;5(2):e9250.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hivert MF, Perng W, Watkins SM, et al. Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J Dev Orig Health Dis. 2015;1–14.

    Google Scholar 

  • Huffman KM, Slentz CA, Bateman LA, et al. Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity. Diabetes Care. 2011;34(1):174-176.

    Article  PubMed Central  PubMed  Google Scholar 

  • Iqbal W, Ciriello J. Effect of maternal chronic intermittent hypoxia during gestation on offspring growth in the rat. Am J Obstet Gynecol. 2013;209(6):564 e561-569.

    Google Scholar 

  • Isganaitis E, Woo M, Ma H, et al. Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes. 2014;63(2):688-700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaquet D, Gaboriau A, Czernichow P, et al. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J Clin Endocrinol Metab. 2000;85(4):1401-1406.

    CAS  PubMed  Google Scholar 

  • Jaquet D, Deghmoun S, Chevenne D, et al. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia. 2005;48(5):849-855.

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Mark PJ, Keelan JA, et al. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. J Lipid Res. 2013a;54(8):2247-2254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones ML, Mark PJ, Mori TA, et al. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat. Biol Reprod. 2013b;88(2):37.

    Article  PubMed  CAS  Google Scholar 

  • Karelis AD. Metabolically healthy but obese individuals. Lancet. 2008;372(9646):1281-1283.

    Article  PubMed  Google Scholar 

  • Kensara OA, Wootton SA, Phillips DI, et al. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82(5):980-987.

    CAS  PubMed  Google Scholar 

  • Khan AA, Rodriguez A, Kaakinen M, et al. Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans. Paediatr Perinat Epidemiol. 2011;25(1):20-36.

    Article  PubMed  Google Scholar 

  • King V, Dakin RS, Liu L, et al. Maternal obesity has little effect on the immediate offspring but impacts on the next generation. Endocrinology. 2013;154(7):2514-2524.

    Article  CAS  PubMed  Google Scholar 

  • Kirk SL, Samuelsson AM, Argenton M, et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One. 2009;4(6):e5870.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kral JG, Biron S, Simard S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics. 2006;118(6):e1644-e1649.

    Article  PubMed  Google Scholar 

  • Lane RH, Kelley DE, Gruetzmacher EM, et al. Uteroplacental insufficiency alters hepatic fatty acid-metabolizing enzymes in juvenile and adult rats. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R183-R190.

    CAS  PubMed  Google Scholar 

  • Lawlor DA, Lichtenstein P, Langstrom N. Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation. 2011;123(3):258-265.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Reed DR, Price RA. Familial risk ratios for extreme obesity: implications for mapping human obesity genes. Int J Obes Relat Metab Disord. 1997;21(10):935-940.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He Y, Qi L, et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes. 2010;59(10):2400-2406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Huang J, Li JS, et al. Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol. 2012;56(4):900-907.

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, et al. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135(6):1382-1386.

    CAS  PubMed  Google Scholar 

  • Long NM, Ford SP, Nathanielsz PW. Maternal obesity eliminates the neonatal lamb plasma leptin peak. J Physiol. 2011;589(Pt 6):1455-1462.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luzzo KM, Wang Q, Purcell SH, et al. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacLennan NK, James SJ, Melnyk S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics. 2004;18(1):43-50.

    Article  PubMed  Google Scholar 

  • Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330-e341.

    Article  PubMed  Google Scholar 

  • McCurdy CE, Bishop JM, Williams SM, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119(2):323-335.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Metzger BE, Silverman BL, Freinkel N, et al. Amniotic fluid insulin concentration as a predictor of obesity. Arch Dis Child. 1990;65(10 Spec No): 1050-1052.

    Google Scholar 

  • Miles JL, Huber K, Thompson NM, et al. Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity. Endocrinology. 2009;150(1):179-186.

    Article  CAS  PubMed  Google Scholar 

  • Modi N, Murgasova D, Ruager-Martin R, et al. The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res. 2011;70(3):287-291.

    Article  PubMed  Google Scholar 

  • O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf). 2013;78(1):9-16.

    Article  Google Scholar 

  • Oben JA, Mouralidarane A, Samuelsson AM, et al. Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol. 2010;52(6):913-920.

    Article  CAS  PubMed  Google Scholar 

  • Ogden CL, Carroll MD, Kit BK, et al. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA. 2012;307(5):483-490.

    Article  PubMed  Google Scholar 

  • Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003;11(4):496-506.

    Article  PubMed  Google Scholar 

  • Oken E, Taveras EM, Kleinman KP, et al. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol. 2007;196(4):322 e321-328.

    Google Scholar 

  • Ong KK. Catch-up growth in small for gestational age babies: good or bad? Curr Opin Endocrinol Diabetes Obes. 2007;14(1):30-34.

    Article  CAS  PubMed  Google Scholar 

  • Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr. 2006;95(8):904-908.

    Article  PubMed  Google Scholar 

  • Ong KK, Emmett P, Northstone K, et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. J Clin Endocrinol Metab. 2009;94(5):1527-1532.

    Article  CAS  PubMed  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozanne SE, Lewis R, Jennings BJ, et al. Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet. Clin Sci (Lond). 2004;106(2):141-145.

    Article  CAS  Google Scholar 

  • Park JH, Stoffers DA, Nicholls RD, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316-2324.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. 2001;323(7325):1331-1335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petraglia F, Sutton S, Vale W. Neurotransmitters and peptides modulate the release of immunoreactive corticotropin-releasing factor from cultured human placental cells. Am J Obstet Gynecol. 1989;160(1):247-251.

    Article  CAS  PubMed  Google Scholar 

  • Pinney SE, Simmons RA. Metabolic programming, epigenetics, and gestational diabetes mellitus. Curr Diab Rep. 2012;12(1):67-74.

    Article  CAS  PubMed  Google Scholar 

  • Plagemann A, Harder T, Brunn M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009;587(Pt 20):4963-4976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rachdi L, Aiello V, Duvillie B, et al. L-leucine alters pancreatic beta-cell differentiation and function via the mTor signaling pathway. Diabetes. 2012;61(2):409-417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajasingam D, Seed PT, Briley AL, et al. A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. Am J Obstet Gynecol. 2009;200(4): 95 e391-399.

    Google Scholar 

  • Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295(7):349-353.

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri N, Raychaudhuri S, Thamotharan M, et al. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem. 2008;283(20):13611-13626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reusens B, Sparre T, Kalbe L, et al. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia. 2008;51(5):836-845.

    Article  CAS  PubMed  Google Scholar 

  • Richter T, von Zglinicki T. A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol. 2007;42(11):1039-1042.

    Article  CAS  PubMed  Google Scholar 

  • Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol. 2013;113(3):423-432.

    Article  PubMed  Google Scholar 

  • Rooney K, Ozanne SE. Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes (Lond). 2011;35(7):883-890.

    Article  CAS  Google Scholar 

  • Samuelsson AM, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51(2):383-392.

    Article  CAS  PubMed  Google Scholar 

  • Sandman CA, Glynn L, Schetter CD, et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides. 2006;27(6):1457-1463.

    Article  CAS  PubMed  Google Scholar 

  • Sandovici I, Hammerle CM, Ozanne SE, et al. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci. 2013;70(9):1575-1595.

    Article  CAS  PubMed  Google Scholar 

  • Schwimmer JB, Deutsch R, Kahen T, et al. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118(4):1388-1393.

    Article  PubMed  Google Scholar 

  • Seckl JR, Meaney MJ. Glucocorticoid programming. Ann N Y Acad Sci. 2004;1032:63-84.

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Simmons RA. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats. Diabetes. 2010;59(12):3058-3065.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest. 2004;113(2):160-168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shasa DR, Odhiambo JF, Long NM, et al. Multigenerational impact of maternal overnutrition/obesity in the sheep on the neonatal leptin surge in granddaughters. Int J Obes (Lond). 2014.

    Google Scholar 

  • Simmons RA. Developmental origins of diabetes: the role of oxidative stress. Best Pract Res Clin Endocrinol Metab. 2012;26(5):701-708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singhal A, Kennedy K, Lanigan J, et al. Nutrition in infancy and long-term risk of obesity: evidence from 2 randomized controlled trials. Am J Clin Nutr. 2010;92(5):1133-1144.

    Article  CAS  PubMed  Google Scholar 

  • Skilton MR, Gosby AK, Wu BJ, et al. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin Sci (Lond). 2006;111(4):281-287.

    Article  CAS  Google Scholar 

  • Smith J, Cianflone K, Biron S, et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab. 2009;94(11):4275-4283.

    Article  CAS  PubMed  Google Scholar 

  • Snoeck A, Remacle C, Reusens B, et al. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57(2):107-118.

    Article  CAS  PubMed  Google Scholar 

  • Socha P, Grote V, Gruszfeld D, et al. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr. 2011;94(6 Suppl):1776S-1784S.

    Article  CAS  PubMed  Google Scholar 

  • Steculorum SM, Bouret SG. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology. 2011;152(11):4171-4179.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart MS, Heerwagen MJ, Friedman JE. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the “first hit”. Clin Obstet Gynecol. 2013;56(3):577-590.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stocker CJ, Arch JR, Cawthorne MA. Fetal origins of insulin resistance and obesity. Proc Nutr Soc. 2005;64(2):143-151.

    Article  CAS  PubMed  Google Scholar 

  • Stout SA, Espel EV, Sandman CA, et al. Fetal programming of children’s obesity risk. Psychoneuroendocrinology. 2014;53C:29-39.

    Google Scholar 

  • Street ME, Smerieri A, Petraroli A, et al. Placental cortisol and cord serum IGFBP-2 concentrations are important determinants of postnatal weight gain. J Biol Regul Homeost Agents. 2012;26(4):721-731.

    CAS  PubMed  Google Scholar 

  • Sullivan EL, Grayson B, Takahashi D, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30(10):3826-3830.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamashiro KL, Terrillion CE, Hyun J, et al. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009;58(5):1116-1125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Chen JH, Smith NS, et al. Poor maternal nutrition followed by accelerated postnatal growth leads to telomere shortening and increased markers of cell senescence in rat islets. FASEB J. 2009;23(5):1521-1528.

    Article  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS, et al. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab. 2013a;2(4):480-490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarry-Adkins JL, Martin-Gronert MS, Fernandez-Twinn DS, et al. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. FASEB J. 2013b;27(1):379-390.

    Article  CAS  PubMed  Google Scholar 

  • Thomas EL, Parkinson JR, Frost GS, et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring). 2012;20(1):76-87.

    Article  CAS  PubMed  Google Scholar 

  • Tzoulaki I, Sovio U, Pillas D, et al. Relation of immediate postnatal growth with obesity and related metabolic risk factors in adulthood: the northern Finland birth cohort 1966 study. Am J Epidemiol. 2010;171(9):989-998.

    Article  PubMed  Google Scholar 

  • Vickers MH, Breier BH, Cutfield WS, et al. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279(1):E83-E87.

    CAS  PubMed  Google Scholar 

  • Vickers MH, Breier BH, McCarthy D, et al. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R271-R273.

    Article  CAS  PubMed  Google Scholar 

  • Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211-4216.

    Article  CAS  PubMed  Google Scholar 

  • Vickers MH, Gluckman PD, Coveny AH, et al. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology. 2008;149(4):1906-1913.

    Article  CAS  PubMed  Google Scholar 

  • Villamor E, Sparen P, Cnattingius S. Risk of oral clefts in relation to prepregnancy weight change and interpregnancy interval. Am J Epidemiol. 2008;167(11):1305-1311.

    Article  PubMed  Google Scholar 

  • Voltolini C, Petraglia F. Neuroendocrinology of pregnancy and parturition. Handb Clin Neurol. 2014;124:17-36.

    Article  PubMed  Google Scholar 

  • Wadhwa PD, Garite TJ, Porto M, et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am J Obstet Gynecol. 2004;191(4):1063-1069.

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Rector RS, Thyfault JP, et al. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol. 2008;14(2):193-199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westermeier F, Saez PJ, Villalobos-Labra R, et al. Programming of fetal insulin resistance in pregnancies with maternal obesity by ER stress and inflammation. Biomed Res Int. 2014;2014:917672.

    Article  PubMed Central  PubMed  Google Scholar 

  • World Health Organisation. WHO Global Database on Body Mass Index. Geneva: World Health Organisation; 2011.

    Google Scholar 

  • Wrotniak BH, Shults J, Butts S, et al. Gestational weight gain and risk of overweight in the offspring at age 7 y in a multicenter, multiethnic cohort study. Am J Clin Nutr. 2008;87(6):1818-1824.

    CAS  PubMed  Google Scholar 

  • Yan X, Huang Y, Zhao JX, et al. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol Reprod. 2011;85(1):172-178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Long NM, Hein SM, et al. Maternal obesity in ewes results in reduced fetal pancreatic beta-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol. 2011;40(1):30-39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu MJ, Ma Y, Long NM, et al. Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1224-R1231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ziyab AH, Karmaus W, Kurukulaaratchy RJ, et al. Developmental trajectories of Body Mass Index from infancy to 18 years of age: prenatal determinants and health consequences. J Epidemiol Community Health. 2014;68(10):934-941.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Aiken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Aiken, C.E. (2016). Fetal Metabolic Programming. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-11251-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11251-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11250-3

  • Online ISBN: 978-3-319-11251-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics