Skip to main content

Absorption, Absorption Spectrum in Lunar Studies

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science

Definition

Absorption of solar radiation by the rocks on the lunar surface plays a crucial role in identifying a particular mineral’s spectral absorption feature in the electromagnetic spectrum (EMS). Spectroscopy, which is majorly based on the “absorption” caused by the interaction of solar electromagnetic wave radiation with the rocks and soils on the lunar surface, pertains to two primary goals, first is to study the matter structures and then internal interactions (e.g., atomic and molecular structures along with various orbital, spin, and nuclear interactions) followed by the identification of chemical composition and quantity measurement. However, the “interaction” and “absorption” significantly modify depending on the particular range of wavelength in EMS (Clark 1999). Optical spectroscopy utilizes the visible to near-infrared and shortwave infrared (VNIR-SWIR) region (400–3000 nm) (metal-to-metal charge transfer transitions) and in the far-infrared range (3000–10,000 nm) where...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams JB (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J Geophys Res 79:4829–4836. https://doi.org/10.1029/jb079i032p04829

    Article  ADS  Google Scholar 

  • Adams JB, Goullaud LH (1978) Plagioclase feldspars: visible and near infrared diffuse reflectance spectra as applied to remote sensing. In: Proceedings of Lunar and planetary science conference. New York, pp 1205–1207

    Google Scholar 

  • Adams JB, Jones RL (1970) Spectral reflectivity of lunar samples. Science (80-) 167:737–739. https://doi.org/10.1126/science.167.3918.737

    Article  ADS  Google Scholar 

  • Adams J, Mccord T (1970) Remote sensing of lunar surface mineralogy – implications from visible and near-infrared reflectivity of Apollo 11 samples. In: Geochimica et Cosmochimica Acta Supplement, p 1937

    Google Scholar 

  • Anbazhagan S, Arivazhagan S (2009) Reflectance spectra of analog basalts; implications for remote sensing of lunar geology. Planet Space Sci 57:1346–1358. https://doi.org/10.1016/j.pss.2009.06.020

    Article  ADS  Google Scholar 

  • Bart GD (2007) Lunar surface geology from analysis of impact craters and their ejecta. Ph. D. Thesis [The University of Arizona] https://repository.arizona.edu/handle/10150/193987

  • Burke JD (1986) Lunar Materials and Processes. National SAMPE Symposium and Exhibition (Proceedings), 1986, 900–912

    Google Scholar 

  • Charette MP, McCord TB, Pieters C, Adams JB (1974) Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. J Geophys Res 79:1605–1613

    Article  ADS  Google Scholar 

  • Chauhan P, Chauhan M, Verma PA et al (2021) Unambiguous detection of OH and H2O on the Moon from Chandrayaan-2 imaging infrared spectrometer reflectance data using 3 μm hydration feature. Curr Sci 121:391–401. https://doi.org/10.18520/cs/v121/i3/391-401

    Article  Google Scholar 

  • Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer Geology, Cham

    Book  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Man Remote Sens 3:3–58

    Google Scholar 

  • Cloutis EA, Gaffey MJ (1991a) Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications. Earth Moon Planet 53:11–53

    Article  ADS  Google Scholar 

  • Cloutis EA, Gaffey MJ (1991b) Pyroxene spectroscopy revisited: spectral-compositional correlations and relationship to geothermometry. J Geophys Res Planets 96:22809–22826

    Article  Google Scholar 

  • Demidova SI, Nazarov MA, Lorenz CA et al (2007) Chemical composition of lunar meteorites and the lunar crust. Petrology 15:386–407. https://doi.org/10.1134/S0869591107040042

    Article  Google Scholar 

  • Dhingra D (2018) The new moon: major advances in lunar science enabled by compositional remote sensing from recent missions. Geoscience 8. https://doi.org/10.3390/geosciences8120498

  • Fagan AL (2016) Volcanic Processes on the Moon. In: Cudnik B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_1-2

  • Foing BH, Racca GD, Marini A et al (2003) SMART-1 mission to the moon: technology and science goals. Adv Sp Res 31:2323–2333

    Article  ADS  Google Scholar 

  • Glotch TD, Lucey PG, Bandfield JL et al (2010) Highly silicic compositions on the Moon. Science (80-) 329:1510–1513

    Article  ADS  Google Scholar 

  • Gou S, Di K, Yue Z et al (2019) Lunar deep materials observed by Chang’e-4 rover. Earth Planet Sci Lett 528:115829. https://doi.org/10.1016/j.epsl.2019.115829

    Article  Google Scholar 

  • Griffiths PR, Chalmers JM (2002) Handbook of vibrational spectroscopy. Wiley Online Library

    Google Scholar 

  • Gupta RP (2003) Remote sensing geology. Springer, Heidelberg, Germany

    Google Scholar 

  • Harland DM (2008) Exploring the moon: the Apollo expeditions (2nd ed.). Praxis New York, NY. https://doi.org/10.1007/978-0-387-74641-8

  • Hazen RM, Bell PM, Mao HK (1978) Effects of compositional variation on absorption spectra of lunar pyroxenes. In: Lunar and planetary science conference proceedings, pp 2919–2934

    Google Scholar 

  • He ZP, Wang BY, Lv G et al (2014) Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’E 3 project. Rev Sci Instrum 85:3–6. https://doi.org/10.1063/1.4891865

    Article  Google Scholar 

  • Heiken GH, Vaniman DT, French BM (1991) Lunar Sourcebook: A User's Guide to the Moon. (1991). Nigeria: Cambridge University Press

    Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G, Head III JW (1996) Mare Australe: new results from lunar orbiter and Clementine UV/VIS imagery. In: Lunar and planetary science conference

    Google Scholar 

  • Horanyi M, Sternovsky Z, Lankton M et al (2014) The lunar dust experiment (LDEX) onboard the lunar atmosphere and dust environment explorer (LADEE) mission. Space Sci Rev 185:93–113

    Article  ADS  Google Scholar 

  • Horgan BHN, Cloutis EA, Mann P, Bell JF (2014) Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus 234:132–154. https://doi.org/10.1016/j.icarus.2014.02.031

    Article  ADS  Google Scholar 

  • Hunt GR, Salisbury JW (1976) Visible and near infrared spectra of minerals and rocks: XI. Sedimentary Rocks Mod Geol 5:211–217

    Google Scholar 

  • Isaacson PJ, Pieters CM (2010) Deconvolution of lunar olivine reflectance spectra: implications for remote compositional assessment. Icarus 210:8–13

    Article  ADS  Google Scholar 

  • Isaacson PJ, Sarbadhikari AB, Pieters CM et al (2011) The lunar rock and mineral characterization consortium: deconstruction and integrated mineralogical, petrologic, and spectroscopic analyses of mare basalts. Meteorit Planet Sci 46:228–251. https://doi.org/10.1111/j.1945-5100.2010.01148.x

    Article  ADS  Google Scholar 

  • Johnson EA, Rossman GR (2013) The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 C: Implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am Mineral 98:1779–1787

    Article  ADS  Google Scholar 

  • Johnson JR, Larson SM, Singer RB (1991) Remote sensing of potential lunar resources: 1. Near-side compositional properties. J Geophys Res Planets 96:18861–18882

    Article  Google Scholar 

  • Karr C (2013) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Elsevier, New York, US

    Google Scholar 

  • King TVV, Ridley WI (1987) Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications. J Geophys Res Solid Earth 92:11457–11469

    Article  Google Scholar 

  • Klima RL, Pieters CM, Dyar MD (2008) Characterization of the 1.2 μm M1 pyroxene band: extracting cooling history from near-IR spectra of pyroxenes and pyroxene-dominated rocks. Meteorit Planet Sci 43:1591–1604

    Google Scholar 

  • Klima RL, Pieters CM, Boardman JW et al (2011) New insights into lunar petrology: distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). J Geophys Res E Planets 116:E00G06. https://doi.org/10.1029/2010JE003719

    Article  Google Scholar 

  • Kramer GY, Besse S, Nettles J et al (2011) Newer views of the Moon: comparing spectra from Clementine and the Moon Mineralogy Mapper. J Geophys Res E Planets 116:1–11. https://doi.org/10.1029/2010JE003728

    Article  Google Scholar 

  • Le Mouélic S (2002) Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data. J Geophys Res 107:4–5. https://doi.org/10.1029/2000je001484

    Article  Google Scholar 

  • Le Mouélic S, Langevin Y (2001) The olivine at the lunar crater Copernicus as seen by Clementine NIR data. Planet Space Sci 49:65–70. https://doi.org/10.1016/S0032-0633(00)00091-X

    Article  ADS  Google Scholar 

  • Li C, Liu D, Liu B et al (2019) Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 569:378–382. https://doi.org/10.1038/s41586-019-1189-0

    Article  ADS  Google Scholar 

  • Lin H, He Z, Yang W et al (2020) Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool. Natl Sci Rev 7:913–920

    Article  ADS  Google Scholar 

  • Ling Z, Qiao L, Liu C et al (2019) Composition, mineralogy and chronology of mare basalts and non-mare materials in Von Kármán crater: landing site of the Chang’E−4 mission. Planet Space Sci 179. https://doi.org/10.1016/j.pss.2019.104741

  • Logan LM, Hunt GR, Balsamo SR, Salisbury JW (1972) Midinfrared emission spectra of Apollo 14 and 15 soils and remote compositional mapping of the moon. In: Lunar and planetary science conference proceedings, p 3069

    Google Scholar 

  • Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the Moon. Science (80-) 268:1150–1153

    Article  ADS  Google Scholar 

  • Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J Geophys Res E Planets 103:3679–3699. https://doi.org/10.1029/97JE03019

    Article  ADS  Google Scholar 

  • Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J Geophys Res E Planets 105:20297–20305. https://doi.org/10.1029/1999JE001117

    Article  ADS  Google Scholar 

  • Lucey P, Korotev RL, Gillis JJ et al (2006) Understanding the lunar surface and space-Moon interactions. Rev Mineral Geochem 60:83–219

    Article  Google Scholar 

  • Martens WN (2004) The vibrational spectroscopy of minerals (Doctoral dissertation, Queensland University of Technology). https://eprints.qut.edu.au/15940/

  • McCord TB, Clark RN, Hawke BR et al (1981) Moon: near-infrared spectral reflectance, a first good look. J Geophys Res Solid Earth 86:10883–10892

    Article  Google Scholar 

  • Mustard JF, Pieters CM, Isaacson PJ, et al (2011) Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. J Geophys Res 116, E00G12, https://doi.org/10.1029/2010JE003726

  • Nash DB, Salisbury JW (1991) Infrared reflectance spectra (2.2–15 μm) of plagioclase feldspars. Geophys Res Lett 18:1151–1154. https://doi.org/10.1029/91GL01008

    Article  ADS  Google Scholar 

  • Nozette S, Rustan P, Pleasance LP et al (1994) The Clementine mission to the Moon: scientific overview. Science (80-) 266:1835–1839

    Article  ADS  Google Scholar 

  • Ohtake M, Haruyama J, Matsunaga T et al (2008) Performance and scientific objectives of the SELENE (KAGUYA) multiband imager. Earth Planets Space 60:257–264. https://doi.org/10.1186/BF03352789

    Article  ADS  Google Scholar 

  • Ohtake M, Matsunaga T, Haruyama J et al (2009) The global distribution of pure anorthosite on the Moon. Nature 461:236–240

    Article  ADS  Google Scholar 

  • Papike J, Taylor L, Simon S (1991) Lunar minerals. Lunar sourcebook: A user’s guide to the Moon, pp.121–181, Cambridge Univeristy Press, New York

    Google Scholar 

  • Pieters C, Shkuratov Y, Kaydash V et al (2006) Lunar soil characterization consortium analyses: pyroxene and maturity estimates derived from Clementine image data. Icarus 184:83–101

    Article  ADS  Google Scholar 

  • Pieters CM, Klima RL, Hiroi T, et al (2008) Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. J Geophys Res 113, E06004, https://doi.org/10.1029/2007JE002939

  • Pieters CM, Boardman J, Buratti B et al (2009) The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Current Science 96(4):500–505

    Google Scholar 

  • Pieters CM, Besse S, Boardman J, et al (2011) Mg-spinel lithology: A new rock type on the lunar farside. J Geophys Res 116, E00G08, https://doi.org/10.1029/2010JE003727

  • Robinson MS, Brylow SM, Tschimmel M et al (2010) Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci Rev 150:81–124. https://doi.org/10.1007/s11214-010-9634-2

    Article  ADS  Google Scholar 

  • Salisbury JW, D’Aria DM (1994) Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens Environ 47:345–361. https://doi.org/10.1016/0034-4257(94)90102-3

    Article  ADS  Google Scholar 

  • Salisbury JW, Wald A, D’Aria DM (1994) Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. J Geophys Res 99:11897–11911. https://doi.org/10.1029/93jb03600

    Article  ADS  Google Scholar 

  • Salisbury JW, Basu A, Fischer EM (1997) Thermal infrared spectra of lunar soils. Icarus 130:125–139. https://doi.org/10.1006/icar.1997.5809

    Article  ADS  Google Scholar 

  • Schrader B (1996) Infrared and Raman spectroscopy, method and applications

    Google Scholar 

  • Staid MI, Pieters CM, Head JW III (1996) Mare Tranquillitatis: basalt emplacement history and relation to lunar samples. J Geophys Res Planets 101:23213–23228

    Article  Google Scholar 

  • Staid MI, Pieters CM, Besse S, et al (2011) The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J Geophys Res 116. E00G10, https://doi.org/10.1029/2010JE003735

  • Toksöz MN, Dainty AM, Solomon SC, Anderson KR (1974) Structure of the Moon. Rev Geophys 12:539–567

    Article  ADS  Google Scholar 

  • Ulrich GE, Hodges CA, Muehlberger WR (1981) Geology of the Apollo 16 area, central lunar highlands. US Geol Surv Prof Pap 1048. https://doi.org/10.3133/pp1048

  • Warren PH (1989) KREEP: major-element diversity, trace-element uniformity (almost). In: Moon in transition: Apollo 14, KREEP, and evolved lunar rocks, pp 149–153

    Google Scholar 

  • Warren PH (2005) “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and the bulk Moon. Meteorit Planet Sci 40:477–506. https://doi.org/10.1111/j.1945-5100.2005.tb00395.x

    Article  ADS  Google Scholar 

  • Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys 17:73–88. https://doi.org/10.1029/RG017i001p00073

    Article  ADS  Google Scholar 

  • Williams RJ, Jadwick JJ (1980) Handbook of lunar materials (No. NASA-RP-1057)

    Google Scholar 

  • Wolfe WL, Nicodemus FE (1965) Radiation theory. Handbook of military infrared technology, pp 3–30. Office of Naval Research, Department of the Navy, Washington, US

    Google Scholar 

  • Young A (2017) The Apollo lunar samples: collection analysis and results (1st ed.). Praxis New York, NY. https://doi.org/10.1007/978-1-4614-6185-2

  • Zou YL, Liu IZ, Liu JJ, Xu T (2004) Reflectance spectral characteristics of lunar surface materials. Chin J Astron Astrophys 4:97–104. https://doi.org/10.1088/1009-9271/4/1/97

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Tripathi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tripathi, P., Garg, R.D. (2022). Absorption, Absorption Spectrum in Lunar Studies. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_181-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_181-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics