Skip to main content

ACKR3

  • Living reference work entry
  • First Online:
Encyclopedia of Inflammatory Diseases
  • 1129 Accesses

Synonyms

Atypical chemokine receptor 3, for the ligands CXCL12, CXCL11, and adrenomedullin; CMKOR; CXCR7; GPR159; RDC1

Definition

ACKR7 is a seven-transmembrane domain receptor phylogenetically related to the rhodopsin-like family of G protein-coupled receptors (GPCRs) which binds the chemokines CXCL12/SDF-1 (Kd ~ 0.4 nM) and CXCL11/I-TAC (Kd ~ 4 nM) and the peptide hormone adrenomedullin (Kd ~ 0.2 nM), but appears not to couple to heterotrimeric G proteins. Therefore, ACKR3 should not be classified as GPCR rather as a seven-transmembrane domain receptor (7TMDR) (Balabanian et al. 2005; Burns et al. 2006; Kapas and Clark 1995; Klein et al. 2014). Nevertheless, ACKR3 is a functional cell surface receptor as it shows ligand-induced responses such as enhanced internalization and arrestin recruitment. Because ACKR3 does not induce typical chemokine receptor responses in cells, such as chemotaxis, the receptor belongs to the group of atypical chemokine receptors (Bachelerie et al. 2014b)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bachelerie, F., Ben-Baruch, A., Burkhardt, A. M., Combadiere, C., Farber, J. M., Graham, G. J. et al. (2014a). International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacological Review, 66, 1–79.

    Google Scholar 

  • Bachelerie, F., Graham, G. J., Locati, M., Mantovani, A., Murphy, P. M., Nibbs, R., et al. (2014b). New nomenclature for atypical chemokine receptors. Nature Immunology, 15, 207–208.

    Article  CAS  PubMed  Google Scholar 

  • Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. Journal of Biological Chemistry, 280, 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  • Berahovich, R. D., Zabel, B. A., Lewen, S., Walters, M. J., Ebsworth, K., Wang, Y., et al. (2014). Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology, 141, 111–122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132, 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. Journal of Experimental Medicine, 203, 2201–2213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Orengo, L., Holman, D. W., Dorsey, D., Zhou, L., Zhang, P., Wright, M., et al. (2011). CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. Journal of Experimental Medicine, 208, 327–339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Developmental Biology, 7, 23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Decaillot, F. M., Kazmi, M. A., Lin, Y., Ray-Saha, S., Sakmar, T. P., & Sachdev, P. (2011). CXCR7/CXCR4 heterodimer constitutively recruits {beta}-arrestin to enhance cell migration. Journal of Biological Chemistry, 286, 32188–32197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dona, E., Barry, J. D., Valentin, G., Quirin, C., Khmelinskii, A., Kunze, A., et al. (2013). Directional tissue migration through a self-generated chemokine gradient. Nature, 503, 285–289.

    CAS  PubMed  Google Scholar 

  • Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.

    Article  CAS  PubMed  Google Scholar 

  • Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). AMD3100 is a CXCR7 ligand with allosteric agonist properties. Molecular Pharmacology, 75, 1240–1247.

    Article  CAS  PubMed  Google Scholar 

  • Kapas, S., & Clark, A. J. (1995). Identification of an orphan receptor gene as a type 1 calcitonin gene-related peptide receptor. Biochemical and Biophysical Research Communications, 217, 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Klein, K. R., Karpinich, N. O., Espenschied, S. T., Willcockson, H. H., Dunworth, W. P., Hoopes, S. L., et al. (2014). Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Developmental Cell, 30, 528–540.

    Article  CAS  PubMed  Google Scholar 

  • Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of CXCR7. Neoplasia, 11, 1022–1035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luker, K. E., Lewin, S. A., Mihalko, L. A., Schmidt, B. T., Winkler, J. S., Coggins, N. L., et al. (2012). Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene, 31, 4750–4758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naumann, U., Cameroni, E., Pruenster, M., Mahabaleshwar, H., Raz, E., Zerwes, H. G., et al. (2010). CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One, 5, e9175.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajagopal, S., Rajagopal, K., & Lefkowitz, R. J. (2010). Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nature Reviews Drug Discovery, 9, 373–386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray, P., Mihalko, L. A., Coggins, N. L., Moudgil, P., Ehrlich, A., Luker, K. E., et al. (2012). Carboxy-terminus of CXCR7 regulates receptor localization and function. International Journal of Biochemistry and Cell Biology, 44, 669–678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Alcaniz, J. A., Haege, S., Mueller, W., Pla, R., Mackay, F., Schulz, S., et al. (2011). Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron, 69, 77–90.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Martin, L., Sanchez-Mateos, P., & Cabanas, C. (2013). CXCR7 impact on CXCL12 biology and disease. Trends in Molecular Medicine, 19, 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National academy of Sciences of the United States of America, 104, 14759–14764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire, T., et al. (2002). Large-scale analysis of the human and mouse transcriptomes. Proceedings of the National academy of Sciences of the United States of America, 99, 4465–4470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thelen, M., & Stein, J. V. (2008). How chemokines invite leukocytes to dance. Nature Immunology, 9, 953–959.

    Article  CAS  PubMed  Google Scholar 

  • Thelen, M., & Thelen, S. (2008). CXCR7, CXCR4 and CXCL12: An eccentric trio? Journal of Neuroimmunology, 198, 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Venkiteswaran, G., Lewellis, S. W., Wang, J., Reynolds, E., Nicholson, C., & Knaut, H. (2013). Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell, 155, 674–687.

    Article  CAS  PubMed  Google Scholar 

  • Zabel, B. A., Lewen, S., Berahovich, R. D., Jaen, J. C., & Schall, T. J. (2011). The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells. Molecular Cancer, 10, 73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Thelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Thelen, M. (2015). ACKR3. In: Parnham, M. (eds) Encyclopedia of Inflammatory Diseases. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0620-6_222-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0620-6_222-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Online ISBN: 978-3-0348-0620-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics