Skip to main content

Abstract/Summary

Direct endoscopic access to the bile duct was a technological challenge in attempts to miniaturize standard endoscope design until the solution was found in a semi-disposable optical then completely disposable digital controllable catheter-type instrument that would pass down a therapeutic duodenoscope instrumentation channel. Already compatible with diagnostic adjunctive modalities, this design continues to evolve with the addition of dedicated accessories to permit more therapeutic applications. The pathobiology of bile duct malignancy continues to cause difficulties in making a rapid and accurate diagnosis with the prospect of curative surgery. The endoscopic management of choledocholithiasis has been improved to almost 100% success by the ability to provide intracorporeal lithotripsy, and the future for other intraductal benign and malignant therapies is encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hopkins HH, Kapany NS (1954) A flexible Fibrescope, using static scanning. Nature 173(4392):39–41

    Article  Google Scholar 

  2. Barkin JS, Silvis S, Greenwald R (1980) Endoscopic therapy of the “sump” syndrome. Dig Dis Sci 25(8):597–601

    Article  CAS  PubMed  Google Scholar 

  3. Brewer Gutierrez OI et al (2018) Efficacy and safety of digital single-operator Cholangioscopy for difficult biliary stones. Clin Gastroenterol Hepatol 16(6):918–926. e1

    Article  PubMed  Google Scholar 

  4. Takada T et al (1974) A new technique for the diagnosis and therapy of cholangitic hepatic abscesses; percutaneous transhepatic cholangial drainage (auther’s transl). Nihon Shokakibyo Gakkai Zasshi 71(7):657–665

    CAS  PubMed  Google Scholar 

  5. Nimura Y et al (1988) Value of percutaneous transhepatic cholangioscopy (PTCS). Surg Endosc 2(4):213–219

    Article  CAS  PubMed  Google Scholar 

  6. Oh HC et al (2007) Analysis of percutaneous transhepatic cholangioscopy-related complications and the risk factors for those complications. Endoscopy 39(8):731–736

    Article  PubMed  Google Scholar 

  7. Rösch W, Koch H, Demling L (2008) Peroral Cholangioscopy. Endoscopy 08(03):172–175

    Article  Google Scholar 

  8. Urakami Y, Seifert E, Butke H (1977) Peroral direct cholangioscopy (PDCS) using routine straight-view endoscope: first report. Endoscopy 9(1):27–30

    Article  CAS  PubMed  Google Scholar 

  9. Nakajima M et al (1976) Peroral cholangiopancreatosocopy (PCPS) under duodenoscopic guidance. Am J Gastroenterol 66(3):241–247

    CAS  PubMed  Google Scholar 

  10. Romberg C (2009) Systemic air embolism after ERCP: a case report and review of the literature (with video). Gastrointest Endosc 70(5):1043–1045

    Article  PubMed  Google Scholar 

  11. Dellon ES et al (2009) The use of carbon dioxide for insufflation during GI endoscopy: a systematic review. Gastrointest Endosc 69(4):843–849

    Article  PubMed  Google Scholar 

  12. Dion YM, Levesque C, Doillon CJ (1995) Experimental carbon dioxide pulmonary embolization after vena cava laceration under pneumoperitoneum. Surg Endosc 9(10):1065–1069

    Article  CAS  PubMed  Google Scholar 

  13. Lowdon JD, Tidmore TL Jr (1988) Fatal air embolism after gastrointestinal endoscopy. Anesthesiology 69(4):622–623

    Article  CAS  PubMed  Google Scholar 

  14. Brauer BC, Chen YK, Shah RJ (2012) Single-step direct cholangioscopy by freehand intubation using standard endoscopes for diagnosis and therapy of biliary diseases. Am J Gastroenterol 107(7):1030–1035

    Article  PubMed  Google Scholar 

  15. Larghi A, Waxman I (2006) Endoscopic direct cholangioscopy by using an ultra-slim upper endoscope: a feasibility study. Gastrointest Endosc 63(6):853–857

    Article  PubMed  Google Scholar 

  16. Moon JH et al (2009) Intraductal balloon-guided direct peroral cholangioscopy with an ultraslim upper endoscope (with videos). Gastrointest Endosc 70(2):297–302

    Article  PubMed  Google Scholar 

  17. Lim P, Aggarwal V, Craig P (2015) Role of balloon-assisted cholangioscopy in a multiethnic cohort to assess complex biliary disease (with videos). Gastrointest Endosc 81(4):932–942

    Article  PubMed  Google Scholar 

  18. Waxman I et al (2010) Feasibility of a novel system for intraductal balloon-anchored direct peroral cholangioscopy and endotherapy with an ultraslim endoscope (with videos). Gastrointest Endosc 72(5):1052–1056

    Article  PubMed  Google Scholar 

  19. Meves V, Ell C, Pohl J (2014) Efficacy and safety of direct transnasal cholangioscopy with standard ultraslim endoscopes: results of a large cohort study. Gastrointest Endosc 79(1):88–94

    Article  PubMed  Google Scholar 

  20. Li J et al (2018) A new hybrid anchoring balloon for direct peroral cholangioscopy using an ultraslim upper endoscope. Dig Endosc 30(3):364–371

    Article  PubMed  Google Scholar 

  21. Kautz G (1983) Transpapillary bile duct drainage with a large-caliber endoprosthesis. Endoscopy 15(5):312–315

    Article  CAS  PubMed  Google Scholar 

  22. Lenze F et al (2017) Direct peroral cholangioscopy with a new anchoring technique using the guide probe of Kautz - first clinical experiences. Endoscopy 49(9):909–912

    Article  PubMed  Google Scholar 

  23. Itoi T et al (2012) Free-hand direct insertion ability into a simulated ex vivo model using a prototype multibending peroral direct cholangioscope (with videos). Gastrointest Endosc 76(2):454–457

    Article  PubMed  Google Scholar 

  24. Itoi T et al (2014) Clinical evaluation of a prototype multi-bending peroral direct cholangioscope. Dig Endosc 26(1):100–107

    Article  PubMed  Google Scholar 

  25. Beyna T et al (2016) Direct retrograde cholangioscopy with a new prototype double-bending cholangioscope. Endoscopy 48(10):929–933

    Article  PubMed  Google Scholar 

  26. Tringali A et al (2015) Intraductal biliopancreatic imaging: European Society of Gastrointestinal Endoscopy (ESGE) technology review. Endoscopy 47(8):739–753

    Article  PubMed  Google Scholar 

  27. Igarashi Y et al (2009) Effectiveness of peroral cholangioscopy and narrow band imaging for endoscopically diagnosing the bile duct cancer. Dig Endosc 21(Suppl 1):S101–S102

    Article  PubMed  Google Scholar 

  28. Chen YK, Pleskow DK (2007) SpyGlass single-operator peroral cholangiopancreatoscopy system for the diagnosis and therapy of bile-duct disorders: a clinical feasibility study (with video). Gastrointest Endosc 65(6):832–841

    Article  PubMed  Google Scholar 

  29. Chathadi KV, Chen YK (2009) New kid on the block: development of a partially disposable system for cholangioscopy. Gastrointest Endosc Clin N Am 19(4):545–555

    Article  PubMed  Google Scholar 

  30. Draganov PV et al (2011) Prospective evaluation of the clinical utility of ERCP-guided cholangiopancreatoscopy with a new direct visualization system. Gastrointest Endosc 73(5):971–979

    Article  PubMed  Google Scholar 

  31. Shah RJ et al (2018) Randomized study of digital single-operator cholangioscope compared to fiberoptic single-operator cholangioscope in a novel cholangioscopy bench model. Endosc Int Open 6(7):E851–E856

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ueki T et al (2010) Carbon dioxide insufflation is useful for obtaining clear images of the bile duct during peroral cholangioscopy (with video). Gastrointest Endosc 71(6):1046–1051

    Article  PubMed  Google Scholar 

  33. Mukewar S et al (2017) Effects of carbon dioxide insufflation during direct cholangioscopy on biliary pressures and vital parameters: a pilot study in porcine models. Gastrointest Endosc 85(1):238–242. e1

    Article  PubMed  Google Scholar 

  34. Nishikawa T et al (2014) Preoperative assessment of longitudinal extension of cholangiocarcinoma with peroral video-cholangioscopy: a prospective study. Dig Endosc 26(3):450–457

    Article  PubMed  Google Scholar 

  35. Inamdar S, Trindade AJ, Sejpal DV (2017) Bile duct mass determined to be eosinophilic cholangitis by digital Cholangioscopy. Clin Gastroenterol Hepatol 15(12):e173–e174

    Article  PubMed  Google Scholar 

  36. Parsi MA (2015) Biliary papillomatosis: diagnosis with direct peroral cholangioscopy. Gastrointest Endosc 81(1):231–232

    Article  PubMed  Google Scholar 

  37. Carr-Locke DL (2002) Therapeutic role of ERCP in the management of suspected common bile duct stones. Gastrointest Endosc 56(6 Suppl):S170–S174

    Article  PubMed  Google Scholar 

  38. Yasuda I, Itoi T (2013) Recent advances in endoscopic management of difficult bile duct stones. Dig Endosc 25(4):376–385

    Article  PubMed  Google Scholar 

  39. Williamson JB, Draganov PV (2012) The usefulness of SpyGlass choledochoscopy in the diagnosis and treatment of biliary disorders. Curr Gastroenterol Rep 14(6):534–541

    Article  CAS  PubMed  Google Scholar 

  40. Buxbaum J et al (2018) Randomized trial of cholangioscopy-guided laser lithotripsy versus conventional therapy for large bile duct stones (with videos). Gastrointest Endosc 87(4):1050–1060

    Article  PubMed  Google Scholar 

  41. Barakat MT et al (2018) A prospective evaluation of radiation-free direct solitary cholangioscopy for the management of choledocholithiasis. Gastrointest Endosc 87(2):584–589. e1

    Article  PubMed  Google Scholar 

  42. Woo YS et al (2016) SpyGlass cholangioscopy-assisted guidewire placement for post-LDLT biliary strictures: a case series. Surg Endosc 30(9):3897–3903

    Article  PubMed  Google Scholar 

  43. Bokemeyer A et al (2019) Digital single-operator cholangioscopy: a useful tool for selective guidewire placements across complex biliary strictures. Surg Endosc 33(3):731–737

    Article  PubMed  Google Scholar 

  44. Saumoy M, Kumta NA, Kahaleh M (2016) Digital cholangioscopy for targeted photodynamic therapy of unresectable cholangiocarcinoma. Gastrointest Endosc 84(5):862

    Article  PubMed  Google Scholar 

  45. Banerjee D et al (2018) Successful removal of proximally migrated biliary stent in a liver transplant patient by single-operator digital Cholangioscopy. ACG Case Rep J 5:e50

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ogura T et al (2018) Successful digital cholangioscopy removal of a stent-retriever tip migrated into the periphery of the bile duct. Endoscopy 50(5):E113–E114

    Article  PubMed  Google Scholar 

  47. D’Souza LS et al (2017) A novel technique for biliary polypectomy. Endoscopy 49(10):E244–E245

    Article  PubMed  Google Scholar 

  48. East JE et al (2016) Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) technology review. Endoscopy 48(11):1029–1045

    Article  PubMed  Google Scholar 

  49. Gupta R et al (2010) Narrow band imaging cholangioscopy in hilar cholangiocarcinoma. Indian J Gastroenterol 29(2):78–80

    Article  PubMed  Google Scholar 

  50. Itoi T et al (2007) Peroral cholangioscopic diagnosis of biliary-tract diseases by using narrow-band imaging (with videos). Gastrointest Endosc 66(4):730–736

    Article  PubMed  Google Scholar 

  51. Jang JW et al (2017) Effectiveness of cholangioscopy using narrow band imaging for hepatobiliary malignancies. Ann Surg Treat Res 93(3):125–129

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mounzer R et al (2017) Per-oral video cholangiopancreatoscopy with narrow-band imaging for the evaluation of indeterminate pancreaticobiliary disease. Gastrointest Endosc 85(3):509–517

    Article  PubMed  Google Scholar 

  53. Osanai M et al (2013) Peroral video cholangioscopy to evaluate indeterminate bile duct lesions and preoperative mucosal cancerous extension: a prospective multicenter study. Endoscopy 45(8):635–642

    Article  CAS  PubMed  Google Scholar 

  54. Kandiah K et al (2018) International development and validation of a classification system for the identification of Barrett’s neoplasia using acetic acid chromoendoscopy: the Portsmouth acetic acid classification (PREDICT). Gut 67(12):2085–2091

    Article  CAS  PubMed  Google Scholar 

  55. Flynn AD, Valentine JF (2018) Chromoendoscopy for dysplasia surveillance in inflammatory bowel disease. Inflamm Bowel Dis 24(7):1440–1452

    Article  PubMed  Google Scholar 

  56. Rex DK (2017) Polyp detection at colonoscopy: Endoscopist and technical factors. Best Pract Res Clin Gastroenterol 31(4):425–433

    Article  PubMed  Google Scholar 

  57. Kawahara Y et al (2009) Novel chromoendoscopic method using an acetic acid-indigocarmine mixture for diagnostic accuracy in delineating the margin of early gastric cancers. Dig Endosc 21(1):14–19

    Article  PubMed  Google Scholar 

  58. Hoffman A et al (2008) Methylene blue-aided cholangioscopy in patients with biliary strictures: feasibility and outcome analysis. Endoscopy 40(7):563–571

    Article  CAS  PubMed  Google Scholar 

  59. Maetani I et al (1996) Lack of methylene blue staining in superficial epithelia as a possible marker for superficial lateral spread of bile duct cancer. Diagn Ther Endosc 3(1):29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brauer BC, Fukami N, Chen YK (2008) Direct cholangioscopy with narrow-band imaging, chromoendoscopy, and argon plasma coagulation of intraductal papillary mucinous neoplasm of the bile duct (with videos). Gastrointest Endosc 67(3):574–576

    Article  PubMed  Google Scholar 

  61. Uedo N et al (2005) A novel videoendoscopy system by using autofluorescence and reflectance imaging for diagnosis of esophagogastric cancers. Gastrointest Endosc 62(4):521–528

    Article  PubMed  Google Scholar 

  62. Haringsma J et al (2001) Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest Endosc 53(6):642–650

    Article  CAS  PubMed  Google Scholar 

  63. Itoi T et al (2007) Improvement of choledochoscopy: chromoendocholedochoscopy, autofluorescence imaging, or narrow-band imaging. Dig Endosc 19(s1):S95–S104

    Article  Google Scholar 

  64. Wang TD (2005) Confocal microscopy from the bench to the bedside. Gastrointest Endosc 62(5):696–697

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jailwala J et al (2000) Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest Endosc 51(4 Pt 1):383–390

    Article  CAS  PubMed  Google Scholar 

  66. Navaneethan U et al (2015) Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate biliary strictures: a systematic review. Gastrointest Endosc 82(4):608–614. e2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Meining A et al (2012) Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures. Endoscopy 44(3):251–257

    Article  CAS  PubMed  Google Scholar 

  68. Caillol F et al (2013) Refined probe-based confocal laser endomicroscopy classification for biliary strictures: the Paris classification. Dig Dis Sci 58(6):1784–1789

    Article  PubMed  Google Scholar 

  69. Meining A et al (2011) Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience. Gastrointest Endosc 74(5):961–968

    Article  PubMed  Google Scholar 

  70. Slivka A et al (2015) Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy for the characterization of indeterminate biliary strictures: results of a prospective multicenter international study. Gastrointest Endosc 81(2):282–290

    Article  PubMed  Google Scholar 

  71. Liu Y et al (2016) Probe-based confocal laser endomicroscopy for the diagnosis of undetermined biliary stenoses: a meta-analysis. Clin Res Hepatol Gastroenterol 40(6):666–673

    Article  PubMed  Google Scholar 

  72. Wang KK et al (2015) Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United European Gastroenterol J 3(3):230–254

    Article  PubMed  PubMed Central  Google Scholar 

  73. Noda Y et al (1997) Comparison of echograms by a microscanner and histological findings of the common bile duct, in vitro study. Nihon Shokakibyo Gakkai Zasshi 94(3):172–179

    CAS  PubMed  Google Scholar 

  74. Das A et al (2001) Wire-guided intraductal US: an adjunct to ERCP in the management of bile duct stones. Gastrointest Endosc 54(1):31–36

    Article  CAS  PubMed  Google Scholar 

  75. Moon JH et al (2005) The detection of bile duct stones in suspected biliary pancreatitis: comparison of MRCP, ERCP, and intraductal US. Am J Gastroenterol 100(5):1051–1057

    Article  PubMed  Google Scholar 

  76. Ueno N et al (1997) Diagnosing extrahepatic bile duct stones using intraductal ultrasonography: a case series. Endoscopy 29(5):356–360

    Article  CAS  PubMed  Google Scholar 

  77. Chen L et al (2016) Diagnostic utility of endoscopic retrograde cholangiography/Intraductal ultrasound (ERC/IDUS) in distinguishing malignant from benign bile duct obstruction. Dig Dis Sci 61(2):610–617

    Article  PubMed  Google Scholar 

  78. Vazquez-Sequeiros E et al (2002) Evaluation of indeterminate bile duct strictures by intraductal US. Gastrointest Endosc 56(3):372–379

    Article  PubMed  Google Scholar 

  79. Tamada K et al (1998) Characterization of biliary strictures using intraductal ultrasonography: comparison with percutaneous cholangioscopic biopsy. Gastrointest Endosc 47(5):341–349

    Article  CAS  PubMed  Google Scholar 

  80. Ramchandani M et al (2014) Role of single-operator per-oral cholangioscopy and intraductal US in assessment of portal biliopathy (with videos). Gastrointest Endosc 79(6):1015–1019

    Article  PubMed  Google Scholar 

  81. Bhatia V, Shasthry SM, Mukund A (2016) Intraductal sonography in patients with portal Cavernoma Cholangiopathy. J Ultrasound Med 35(3):651–659

    Article  PubMed  Google Scholar 

  82. Naitoh I et al (2015) Comparison of intraductal ultrasonography findings between primary sclerosing cholangitis and IgG4-related sclerosing cholangitis. J Gastroenterol Hepatol 30(6):1104–1109

    Article  PubMed  Google Scholar 

  83. Lim SU et al (2015) Intraductal ultrasonography without Radiocontrast Cholangiogramin patients with Extrahepatic biliary disease. Gut Liver 9(4):540–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rew SJ et al (2016) Comparison of intraductal ultrasonography-directed and cholangiography-directed endoscopic retrograde biliary drainage in patients with a biliary obstruction. Korean J Intern Med 31(5):872–879

    Article  PubMed  PubMed Central  Google Scholar 

  85. Testoni PA et al (2006) Main pancreatic duct, common bile duct and sphincter of Oddi structure visualized by optical coherence tomography: an ex vivo study compared with histology. Dig Liver Dis 38(6):409–414

    Article  CAS  PubMed  Google Scholar 

  86. Seitz U et al (2001) First in vivo optical coherence tomography in the human bile duct. Endoscopy 33(12):1018–1021

    Article  CAS  PubMed  Google Scholar 

  87. Tyberg A et al (2018) Second generation optical coherence tomography: preliminary experience in pancreatic and biliary strictures. Dig Liver Dis 50(11):1214–1217

    Article  PubMed  Google Scholar 

  88. Arvanitakis M et al (2009) Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy 41(8):696–701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Carr-Locke .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, S., Mukewar, S., Carr-Locke, D. (2020). Advanced Intraductal Biliary Imaging. In: Testoni, P.A., Inoue, H., Wallace, M.B. (eds) Gastrointestinal and Pancreatico-Biliary Diseases: Advanced Diagnostic and Therapeutic Endoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-29964-4_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29964-4_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29964-4

  • Online ISBN: 978-3-030-29964-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics