Skip to main content

Abstract

Artificial intelligence (AI) has emerged as a powerful tool to aid endoscopists in the diagnosis of benign and malignant gastrointestinal (GI) lesions. Herein, we will discuss how AI is being used to detect and characterize gastrointestinal lesions and assess malignant lesion depth of invasion, as well as its application in capsule endoscopy and inflammatory bowel disease. We will briefly touch on the challenges of incorporating AI into clinical practice, including workflow integration, data storage, data privacy, and technology regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Achord JL, Muthusamy VR (2019) The history of gastrointestinal endoscopy. In: Clinical gastrointestinal endoscopy. Elsevier, Amsterdam, pp 2–11. e1

    Chapter  Google Scholar 

  2. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  3. Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, Hoboken, NJ. 630 p

    Book  Google Scholar 

  4. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H (2016) Gastric cancer. Lancet 388(10060):2654–2664

    Article  PubMed  CAS  Google Scholar 

  5. Menon S, Trudgill N (2014) How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc Int Open 2(02):E46–E50

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T et al (2018) Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21(4):653–660

    Article  PubMed  Google Scholar 

  7. Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S et al (2019) A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 51(06):522–531

    Article  PubMed  Google Scholar 

  8. Zhu Y, Wang Q-C, Xu M-D, Zhang Z, Cheng J, Zhong Y-S et al (2019) Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 89(4):806–815.e1

    Article  PubMed  Google Scholar 

  9. Ishioka M, Hirasawa T, Tada T (2019) Detecting gastric cancer from video images using convolutional neural networks. Dig Endosc 31(2):e34–ee5

    Article  PubMed  Google Scholar 

  10. Gado AS, Ebeid BA, Axon AT (2016) Quality assurance in gastrointestinal endoscopy: an Egyptian experience. Arab J Gastroenterol 17(4):153–158

    Article  PubMed  Google Scholar 

  11. Beg S, Ragunath K, Wyman A, Banks M, Trudgill N, Pritchard MD et al (2017) Quality standards in upper gastrointestinal endoscopy: a position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS). Gut 66(11):1886–1899

    Article  PubMed  Google Scholar 

  12. Rex D, Schoenfeld P, Cohen J, Pike I, Adler D, Fennerty M, Park WG, Rizk MK, Sawhney MS, Shaheen NJ, Wani S, Weinberg DS (2015) Quality indicators for colonoscopy. Gastrointest Endosc 81:31–53

    Article  PubMed  Google Scholar 

  13. Wu L, Zhang J, Zhou W, An P, Shen L, Liu J et al (2019) Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut:gutjnl-2018-317366

    Google Scholar 

  14. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529

    Article  CAS  PubMed  Google Scholar 

  15. Crowe SE (2019) Helicobacter pylori infection. N Engl J Med 380(12):1158–1165

    Article  PubMed  Google Scholar 

  16. Watanabe K, Nagata N, Shimbo T, Nakashima R, Furuhata E, Sakurai T et al (2013) Accuracy of endoscopic diagnosis of Helicobacter pylori infection according to level of endoscopic experience and the effect of training. BMC Gastroenterol 13(1):128

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T et al (2017) Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images. EBioMedicine 25:106–111

    Article  PubMed  PubMed Central  Google Scholar 

  18. Itoh T, Kawahira H, Nakashima H, Yata N (2018) Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc Int Open 6(02):E139–EE44

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang C-R, Sheu B-S, Chung P-C, Yang H-B (2004) Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network. Endoscopy 36(07):601–608

    Article  PubMed  Google Scholar 

  20. Shichijo S, Endo Y, Aoyama K, Takeuchi Y, Ozawa T, Takiyama H et al (2019) Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images. Scand J Gastroenterol 54(2):158–163

    Article  PubMed  Google Scholar 

  21. Nakashima H, Kawahira H, Kawachi H, Sakaki N (2018) Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: a single-center prospective study. Ann Gastroenterol 31(4):462

    PubMed  PubMed Central  Google Scholar 

  22. Sawas T, Katzka DA (2019) Sound the alarm for Barrett’s screening! Clin Gastroenterol Hepatol 17(5):829–831

    Article  PubMed  Google Scholar 

  23. Rubenstein JH, Shaheen NJ (2015) Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 149(2):302–17.e1

    Article  PubMed  Google Scholar 

  24. Sharma P, Hawes RH, Bansal A, Gupta N, Curvers W, Rastogi A et al (2013) Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut 62(1):15–21

    Article  PubMed  Google Scholar 

  25. Sharma P, Savides TJ, Canto MI, Corley DA, Falk GW, Goldblum JR et al (2012) The American Society for Gastrointestinal Endoscopy PIVI (preservation and incorporation of valuable endoscopic innovations) on imaging in Barrett’s esophagus. Gastrointest Endosc 76(2):252–254

    Article  PubMed  Google Scholar 

  26. Swager A-F, van der Sommen F, Klomp SR, Zinger S, Meijer SL, Schoon EJ et al (2017) Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy. Gastrointest Endosc 86(5):839–846

    Article  PubMed  Google Scholar 

  27. van der Sommen F, Klomp SR, Swager A-F, Zinger S, Curvers W, Schoon E, et al., editors (2016) Evaluation and comparison of computer vision methods for early Barrett’s cancer detection using volumetric laser endomicroscopy. In: NCCV’16, the Netherlands Conference on Computer Vision, December 12–13, 2016, Lunteren, The Netherlands

    Google Scholar 

  28. Fonollà R, Scheeve T, Struyvenberg MR, Curvers WL, de Groof AJ, van der Sommen F et al (2019) Ensemble of Deep Convolutional Neural Networks for classification of early Barrett’s neoplasia using volumetric laser endomicroscopy. Appl Sci 9(11):2183

    Article  Google Scholar 

  29. van der Putten J, Wildeboer R, de Groof J, van Sloun R, Struyvenberg M, van der Sommen F, et al., editors (2019) Deep learning biopsy marking of early neoplasia in Barrett’s esophagus by combining WLE and BLI modalities. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019); IEEE

    Google Scholar 

  30. Hong J, Park BY, Park H, editors (2017) Convolutional neural network classifier for distinguishing Barrett's esophagus and neoplasia endomicroscopy images. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE

    Google Scholar 

  31. Ebigbo A, Mendel R, Probst A, Manzeneder J, de Souza Jr LA, Papa JP et al (2019) Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut 68(7):1143–1145

    Article  PubMed  Google Scholar 

  32. Shimizu Y, Omori T, Yokoyama A, Yoshida T, Hirota J, Ono Y et al (2008) Endoscopic diagnosis of early squamous neoplasia of the esophagus with iodine staining: high-grade intra-epithelial neoplasia turns pink within a few minutes. J Gastroenterol Hepatol 23(4):546–550

    Article  PubMed  Google Scholar 

  33. Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S et al (2010) Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol 28(9):1566

    Article  PubMed  PubMed Central  Google Scholar 

  34. Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A et al (2019) Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 89(1):25–32

    Article  PubMed  Google Scholar 

  35. Everson M, Herrera L, Li W, Luengo IM, Ahmad O, Banks M et al (2019) Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: a proof-of-concept study. United Eur Gastroenterol J 7(2):297–306

    Article  CAS  Google Scholar 

  36. Inoue H, Kaga M, Ikeda H, Sato C, Sato H, Minami H et al (2015) Magnification endoscopy in esophageal squamous cell carcinoma: a review of the intrapapillary capillary loop classification. Ann Gastroenterol 28(1):41

    PubMed  PubMed Central  Google Scholar 

  37. Kumagai Y, Takubo K, Kawada K, Aoyama K, Endo Y, Ozawa T et al (2019) Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus 16(2):180–187

    Article  PubMed  Google Scholar 

  38. Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N et al (2019) Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc 90(3):407–414

    Article  PubMed  Google Scholar 

  39. Zhao Y-Y, Xue D-X, Wang Y-L, Zhang R, Sun B, Cai Y-P et al (2019) Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. Endoscopy 51(04):333–341

    Article  PubMed  Google Scholar 

  40. Bonnington SN, Rutter MD (2016) Surveillance of colonic polyps: are we getting it right? World J Gastroenterol 22(6):1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao S, Wang S, Pan P, Xia T, Chang X, Yang X et al (2019) Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology 156(6):1661–74.e11

    Article  PubMed  Google Scholar 

  42. Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA et al (2014) Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 370(14):1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim NH, Jung YS, Jeong WS, Yang H-J, Park S-K, Choi K et al (2017) Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies. Intest Res 15(3):411

    Article  PubMed  PubMed Central  Google Scholar 

  44. El-Halabi MM, Rex DK, Saito A, Eckert GJ, Kahi CJ (2019) Defining adenoma detection rate benchmarks in average-risk male veterans. Gastrointest Endosc 89(1):137–143

    Article  PubMed  Google Scholar 

  45. Anderson JC, Butterly LF (2015) Colonoscopy: quality indicators. Clin Transl Gastroenterol 6(2):e77

    Article  PubMed  PubMed Central  Google Scholar 

  46. Misawa M, Kudo SE, Mori Y, Nakamura H, Kataoka S, Maeda Y et al (2016) Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy. Gastroenterology 150(7):1531–12e3

    Article  PubMed  Google Scholar 

  47. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W et al (2018) Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155(4):1069–78.e8

    Article  PubMed  Google Scholar 

  48. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X et al (2019) Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut:gutjnl-2018-317500

    Google Scholar 

  49. Dayyeh BKA, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS et al (2015) ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc 81(3):502.e1–502.e16

    Article  Google Scholar 

  50. East JE, Rees CJ (2018) Making optical biopsy a clinical reality in colonoscopy. Lancet Gastroenterol Hepatol 3(1):10–12

    Article  PubMed  Google Scholar 

  51. Parikh ND, Chaptini L, Njei B, Laine L (2016) Diagnosis of sessile serrated adenomas/polyps with image-enhanced endoscopy: a systematic review and meta-analysis. Endoscopy 48(08):731–739

    Article  PubMed  Google Scholar 

  52. Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R et al (2019) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68(1):94–100

    Article  PubMed  Google Scholar 

  53. Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K et al (2018) Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 169(6):357

    Article  PubMed  Google Scholar 

  54. Guizard N, Ghalehjegh SH, Henkel M, Ding L, Shahidi NC, Jonathan GR et al (2019) 256–Artificial intelligence for real-time multiple polyp detection with identification, tracking, and optical biopsy during colonoscopy. Gastroenterology 156(6):S-48-S-9

    Article  Google Scholar 

  55. Mori Y, Kudo SE, Misawa M, Mori K (2019) Simultaneous detection and characterization of diminutive polyps with the use of artificial intelligence during colonoscopy. VideoGIE 4(1):7–10

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Lange T, Larsen S, Aabakken L (2004) Inter-observer agreement in the assessment of endoscopic findings in ulcerative colitis. BMC Gastroenterol 4(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ozawa T, Ishihara S, Fujishiro M, Saito H, Kumagai Y, Shichijo S et al (2019) Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointest Endosc 89(2):416–21.e1

    Article  PubMed  Google Scholar 

  58. Stidham RW, Liu W, Bishu S, Rice MD, Higgins PDR, Zhu J et al (2019) Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw Open 2(5):e193963

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maeda Y, Kudo SE, Mori Y, Misawa M, Ogata N, Sasanuma S et al (2019) Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc 89(2):408–415

    Article  PubMed  Google Scholar 

  60. Gottlieb K, Travis S, Feagan B, Hussain F, Sandborn WJ, Rutgeerts P (2015) Central reading of endoscopy endpoints in inflammatory bowel disease trials. Inflamm Bowel Dis 21(10):2475–2482

    PubMed  Google Scholar 

  61. Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405(6785):417

    Article  CAS  PubMed  Google Scholar 

  62. Byrne MF, Donnellan F (2019) Artificial intelligence and capsule endoscopy: is the truly “smart” capsule nearly here? Gastrointest Endosc 89(1):195–197

    Article  PubMed  Google Scholar 

  63. Zou Y, Li L, Wang Y, Yu J, Li Y, Deng W, editors (2015) Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In: 2015 IEEE International Conference on Digital Signal Processing (DSP). IEEE

    Google Scholar 

  64. Leenhardt R, Vasseur P, Li C, Saurin JC, Rahmi G, Cholet F et al (2019) A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc 89(1):189–194

    Article  PubMed  Google Scholar 

  65. Aoki T, Yamada A, Aoyama K, Saito H, Tsuboi A, Nakada A et al (2019) Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc 89(2):357–63.e2

    Article  PubMed  Google Scholar 

  66. He J-Y, Wu X, Jiang Y-G, Peng Q, Jain R (2018) Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans Image Process 27(5):2379–2392

    Article  PubMed  Google Scholar 

  67. Yuan Y, Meng MQH (2017) Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 44(4):1379–1389

    Article  PubMed  Google Scholar 

  68. Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309(13):1351–1352

    Article  CAS  PubMed  Google Scholar 

  69. Allen B (2019) The role of the FDA in ensuring the safety and efficacy of artificial intelligence software and devices. J Am Coll Radiol 16(2):208–210

    Article  PubMed  Google Scholar 

  70. Administration FaD (2019) Clinical decision software: guidance for industry and Food and Drug Administration staff

    Google Scholar 

  71. Abouelmehdi K, Beni-Hessane A, Khaloufi H (2018) Big healthcare data: preserving security and privacy. J Big Data 5(1):1

    Article  Google Scholar 

  72. Beskow LM, Dombeck CB, Thompson CP, Watson-Ormond JK, Weinfurt KP (2015) Informed consent for biobanking: consensus-based guidelines for adequate comprehension. Genet Med 17(3):226

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

Daljeet Chahal and Neal Shahidi: No conflicts of interest to disclose.

Michael F. Byrne: CEO and shareholder, Satisfai Health; founder of AI4GI joint venture. Co-development agreement between Olympus America and AI4GI in Artificial intelligence and colorectal polyps.

Author Contributions

Drafting of the manuscript: Daljeet Chahal; Critical revision of the manuscript for important intellectual content: Neal Shahidi, Michael F. Byrne. Final manuscript approval: Michael F. Byrne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljeet Chahal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chahal, D., Shahidi, N., Byrne, M.F. (2021). Artificial Intelligence for Diagnosing G.I. Tract Lesions. In: Testoni, P.A., Inoue, H., Wallace, M.B. (eds) Gastrointestinal and Pancreatico-Biliary Diseases: Advanced Diagnostic and Therapeutic Endoscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-29964-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29964-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29964-4

  • Online ISBN: 978-3-030-29964-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics