Skip to main content

Influence of a Twisting-Helical Disturber on Nanofluid Turbulent Forced Convection

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

The purpose of this chapter is to examine the impacts of using a complex-shape of flow disturber on the heat transportation from a nanofluid (water-copper oxide) with a forced convection within a pipe. For this, the FVM is implemented to model behavior of nanomaterial within a pipe and the specially designed flow disturber. Through the numerical simulations, the uniform concentration of nanomaterial has been assumed in whole domain. The study, particularly, investigates the impact of the height of the flow device blade and the Reynolds number on the Nu as thermal coefficient index and the Darcy factor. The outputs demonstrate that a more turbulence regime, and consequently a better Nu, may be achieved as the height of disturber and pumping power come up. Finally, utilizing the results obtained from the simulations, two formulas have been established for the f and Nu and parameters as functions of the understudy variables, i.e., Reynolds number and the flow disturber height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Barewar SD, Tawri S, Chougule SS (2019) Heat transfer characteristics of free nanofluid impinging jet on flat surface with different jet to plate distance: an experimental investigation. Chem Eng Process Process Intensif 136:1–10. https://doi.org/10.1016/j.cep.2018.12.001

    Article  CAS  Google Scholar 

  2. Wongcharee K, Chuwattanakul V, Eiamsa-ard S (2017) Heat transfer of swirling impinging jets with TiO2-water nanofluids. Chem Eng Process Process Intensif 114:16–23. https://doi.org/10.1016/j.cep.2017.01.004

    Article  CAS  Google Scholar 

  3. Mashali F, Languri EM, Davidson J, Kerns D, Johnson W, Nawaz K, Cunningham G (2019) Thermo-physical properties of diamond nanofluids: a review. Int J Heat Mass Transf 129:1123–1135. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.033

    Article  CAS  Google Scholar 

  4. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H (2019) Nanodiamonds: emerging face of future nanotechnology. Carbon N Y 143:678–699. https://doi.org/10.1016/j.carbon.2018.11.060

    Article  CAS  Google Scholar 

  5. Wang P, Li JB, Bai FW, Liu DY, Xu C, Zhao L, Wang ZF (2017) Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver. Energy 119:652–661

    Article  CAS  Google Scholar 

  6. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M (2019) A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol 343:880–907. https://doi.org/10.1016/j.powtec.2018.11.006

    Article  CAS  Google Scholar 

  7. Nikolov A, Wu P, Wasan D (2019) Structure and stability of nanofluid films wetting solids: an overview. Adv Colloid Interf Sci 264:1–10. https://doi.org/10.1016/j.cis.2018.12.001

    Article  CAS  Google Scholar 

  8. Zendehboudi A, Saidur R, Mahbubul IM, Hosseini SH (2019) Data-driven methods for estimating the effective thermal conductivity of nanofluids: a comprehensive review. Int J Heat Mass Transf 131:1211–1231. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.053

    Article  CAS  Google Scholar 

  9. Sakhaei SA, Valipour MS (2019) Performance enhancement analysis of the flat plate collectors: a comprehensive review. Renew Sust Energ Rev 102:186–204. https://doi.org/10.1016/j.rser.2018.11.014

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang X, Li M, Liu Z (2019) Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat Mass Transf 55:3117–3131

    Article  Google Scholar 

  11. Wang G, Wang F, Shen F, Jiang T, Chen Z, Hu P (2020) Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renew Energy 146:2351–2361

    Article  Google Scholar 

  12. Alam T, Kim M-H (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sust Energ Rev 81:813–839. https://doi.org/10.1016/j.rser.2017.08.060

    Article  CAS  Google Scholar 

  13. Khoshvaght-Aliabadi M, Khaligh SF, Tavassoli Z (2018) An investigation of heat transfer in heat exchange devices with spirally-coiled twisted-ducts using nanofluid. Appl Therm Eng 143:358–375. https://doi.org/10.1016/j.applthermaleng.2018.07.112

    Article  CAS  Google Scholar 

  14. Qiang J, Guo J-F (2015) Oil price volatility and oil-related events: an internet concern study perspective. Appl Energy 137:256–264

    Article  Google Scholar 

  15. Qin Y, Luo J, Chen Z, Mei G, Yan L-E (2018) Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy 171:971–976

    Article  Google Scholar 

  16. Yu D, Zhu H, Han W, Holburn D (2019) Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system. Energy 173(15):554–568

    Article  Google Scholar 

  17. Qin Y (2015) A review on the development of cool pavements to mitigate urban heat island effect. Renew Sust Energ Rev 52:445–459

    Article  Google Scholar 

  18. Cao L, Tu C, Hu P, Liu S (2019) Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Appl Therm Eng 150:552–563

    Article  Google Scholar 

  19. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T (2019) Moist curing increases the solar reflectance of concrete. Constr Build Mater 215:114–118

    Article  Google Scholar 

  20. Gu F, Guo J, Yao X, Summers PA, Widijatmoko SD, Hall P (2017) An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. J Clean Prod 161:765–780

    Article  Google Scholar 

  21. Sheikholeslami M, Arabkoohsar A, Jafaryar M (2019) Impact of a helical-twisting device on nanofluid thermal hydraulic performance of a tube. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08683-x

  22. Bozorgan N, Shafahi M (2015) Performance evaluation of nanofluids in solar energy: a review of the recent literature. Micro Nano Syst Lett 3(1):5

    Article  Google Scholar 

  23. Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA (2013) Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf 48:99–107

    Article  CAS  Google Scholar 

  24. Hussain HA, Jawad Q, Sultan KF (2015) Experimental analysis on thermal efficiency of evacuated tube solar collector by using nanofluids. Sol Energy 4:19–28

    Google Scholar 

  25. Li F, Qin Y, Wu B, Wang T (2020) Experimental study on the cooling performance of shading boards with different emissivities at the underside. Cold Reg Sci Technol 169:102902

    Article  Google Scholar 

  26. Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):229

    Article  CAS  Google Scholar 

  27. Eastman JA, Choi U, Li S, Thompson L, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc Libr Arch 457:3

    Article  Google Scholar 

  28. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92:343–353

    Article  CAS  Google Scholar 

  29. Lee S, Choi S-S, Li S, Eastman J (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280

    Article  CAS  Google Scholar 

  30. Qin Y, Hiller JE (2016) Water availability near the surface dominates the evaporation of pervious concrete. Constr Build Mater 111:77–84

    Article  CAS  Google Scholar 

  31. Wang X, Xu X, Choi SU (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  CAS  Google Scholar 

  32. Said Z, Saidur R, Sabiha MA, Hepbasli A, Rahim NA (2016) Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. J Clean Prod 112:3915–3926

    Article  CAS  Google Scholar 

  33. Xie H, Yu W, Li Y, Chen L (2011) Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett 6(1):124

    Article  CAS  Google Scholar 

  34. Qin Y, He H, Ou X, Bao T (2019) Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod 240:118235. https://doi.org/10.1016/j.jclepro.2019.118235

    Article  Google Scholar 

  35. You S, Kim J, Kim K (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83(16):3374–3376

    Article  CAS  Google Scholar 

  36. Said Z, Saidur R, Rahim NA (2016) Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J Clean Prod 133:518–530

    Article  CAS  Google Scholar 

  37. Kim H, Kim M (2009) Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids. Heat Mass Transf 45(7):991–998

    Article  CAS  Google Scholar 

  38. Qin Y, Hiller JE, Meng D (2019) Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890

  39. Kim H, Ahn HS, Kim MH (2010) On the mechanism of pool boiling critical heat flux enhancement in nanofluids. J Heat Transf 132(6):061501. https://doi.org/10.1115/1.4000746

  40. Witharana S, Palabiyik I, Musina Z, Ding Y (2013) Stability of glycol nanofluids – the theory and experiment. Powder Technol 239:72–77

    Article  CAS  Google Scholar 

  41. Jailani S, Franks GV, Healy TW (2008) ζ potential of nanoparticle suspensions: effect of electrolyte concentration, particle size, and volume fraction. J Am Ceram Soc 91(4):1141–1147

    Article  CAS  Google Scholar 

  42. Van Oss C (1993) Acid – base interfacial interactions in aqueous media. Colloids Surf A Physicochem Eng Asp 78:1–49

    Article  Google Scholar 

  43. Sadr R, Yoda M, Zheng Z, Conlisk A (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367

    Article  CAS  Google Scholar 

  44. Hohenegger C, Mucha PJ (2007) Statistical reconstruction of velocity profiles for nanoparticle image velocimetry. SIAM J Appl Math 68(1):239–252

    Article  CAS  Google Scholar 

  45. Röding M, Deschout H, Braeckmans K, Rudemo M (2013) Measuring absolute nanoparticle number concentrations from particle count time series. J Microsc 251(1):19–26

    Article  CAS  Google Scholar 

  46. Nwosu PN, Meyer J, Sharifpur M (2014) Nanofluid viscosity: a simple model selection algorithm and parametric evaluation. Comput Fluids 101:241–249

    Article  Google Scholar 

  47. Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR (2015) Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy 115:757–769

    Article  CAS  Google Scholar 

  48. Zhang J-F, He Y-L, Tao W-Q (2009) 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles – part II: simulation results of periodic model and comparison between continuous and noncontinuous helical baffles. Int J Heat Mass Transf 52(23):5381–5389

    Article  Google Scholar 

  49. Qin Y, Zhang M, Mei G (2018) A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol 562:725–732

    Article  Google Scholar 

  50. Thulukkanam K (2013) Heat exchanger design handbook, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  51. Salimpour MR, Al-Sammarraie AT, Forouzandeh A, Farzaneh M (2019) Constructal design of circular multilayer microchannel heat sinks. J Ther Sci Eng Appl 11(1): 011001. https://doi.org/10.1115/1.4041196

  52. Alcaraz A, Montalà M, Valderrama C, Cortina JL, Akbarzadeh A, Farran A (2018) Increasing the storage capacity of a solar pond by using solar thermal collectors: heat extraction and heat supply processes using in-pond heat exchangers. Sol Energy 171:112–121

    Article  Google Scholar 

  53. Dumas A, Corradini E (1997) 97/03209 Presence of a liquid water film in air to air flat plate heat exchangers. Energy Fuel 38(4):261

    Google Scholar 

  54. Bai H, Zhu J, Chen Z, Chu J, Liu Y (2018) Performance evaluation of a membrane-based flat-plate heat and mass exchanger used for liquid desiccant regeneration. Appl Therm Eng 139:569–584

    Google Scholar 

  55. Kim K, Lee K-S (2013) Frosting and defrosting characteristics of surface-treated louvered-fin heat exchangers: effects of fin pitch and experimental conditions. Int J Heat Mass Transf 60:505–511

    Article  Google Scholar 

  56. Nuntaphan A, Vithayasai S, Vorayos N, Vorayos N, Kiatsiriroat T (2010) Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement. Int Commun Heat Mass Transf 37(3):287–292

    Article  CAS  Google Scholar 

  57. Rainieri S, Bozzoli F, Pagliarini G (2012) Experimental investigation on the convective heat transfer in straight and coiled corrugated tubes for highly viscous fluids: preliminary results. Int J Heat Mass Transf 55(1–3):498–504

    Article  CAS  Google Scholar 

  58. Kongkaitpaiboon V, Nanan K, Eiamsa-ard S (2010) Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. Int Commun Heat Mass Transf 37(5):560–567

    Article  Google Scholar 

  59. Zhou G, Feng Z (2014) Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int J Therm Sci 78:26–35

    Article  Google Scholar 

  60. Dewan A, Mahanta P, Raju KS, Kumar PS (2004) Review of passive heat transfer augmentation techniques. Proc Inst Mech Eng A J Power Energy 218(7):509–527

    Article  CAS  Google Scholar 

  61. Liu S, Sakr M (2013) A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sust Energ Rev 19:64–81

    Article  CAS  Google Scholar 

  62. Agarwal S, Rao MR (1996) Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts. Int J Heat Mass Transf 39(17):3547–3557

    Article  CAS  Google Scholar 

  63. Shah RK, London AL (1978) Chapter XVI – longitudinal fins and twisted tapes within ducts. In: Shah RK, London AL (eds) Laminar flow forced convection in ducts. Academic, New York, pp 366–384

    Chapter  Google Scholar 

  64. Incropera FP, Bergman TL, Lavine AS, DeWitt DP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken. https://doi.org/10.1073/pnas.0703993104

    Book  Google Scholar 

  65. Kim SMD, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D (2009) Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys 9:119–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sheikholeslami or Ahmad Shafee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sheikholeslami, M., Jafaryar, M., Arabkoohsar, A., Shafee, A. (2020). Influence of a Twisting-Helical Disturber on Nanofluid Turbulent Forced Convection. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics