Skip to main content

Engineered Nanomaterials for Emerging Contaminant Removal from Wastewater

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Emerging contaminants (ECs), mainly organic compounds, are pollutants of growing concern. Several important ones are pharmaceuticals and personal care products, wood preservatives, hormones, plasticizers, pesticides, laundry detergents, surfactants, disinfectants, food additives, and flame retardants among other organic compounds recently found in natural wastewater stream that are generated by both human and also industrial activities. Most of ECs lacks of standard regulations; nevertheless, they could drive to lethal effects on aquatic life but also in human even at small concentrations. The conventional water treatment plants are not able to efficiently remove or even degrade these pollutants, so another effective and expensive tertiary treatment method is required. It is known that adsorption is a very useful method to remove different kinds of contaminants being then a promising method for the removal of EC due to its simplicity on operating design, low initial cost for implementation, and high efficiency. The current review resumes the technological approaches regarding adsorption process used for the treatment of ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F (2020) Recent trends in disposal and treatment technologies of emerging-pollutants- a critical review. TrAC – Trends Anal Chem 122. https://doi.org/10.1016/j.trac.2019.115744

  2. Taheran M, Naghdi M, Brar SK, Verma M, Surampalli RY (2018) Emerging contaminants: here today, there tomorrow! Environ Nanotechnol Monit Manag 10:122–126. https://doi.org/10.1016/j.enmm.2018.05.010

    Article  Google Scholar 

  3. Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263. https://doi.org/10.1016/j.scitotenv.2018.02.006

    Article  CAS  Google Scholar 

  4. Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370. https://doi.org/10.1016/j.memsci.2012.08.029

    Article  CAS  Google Scholar 

  5. Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Appl Clay Sci 99:83–92. https://doi.org/10.1016/j.clay.2014.06.016

    Article  CAS  Google Scholar 

  6. Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21. https://doi.org/10.1016/j.eti.2015.11.001

    Article  Google Scholar 

  7. Peralta Ramos ML, Galaburri G, González JA, Pérez CJ, Villanueva ME, Copello GJ (2018) Influence of GO reinforcement on keratin based smart hydrogel and its application for emerging pollutants removal. J Environ Chem Eng 6:7021–7028. https://doi.org/10.1016/j.jece.2018.11.011

    Article  CAS  Google Scholar 

  8. Russo V, Trifuoggi M, Di Serio M, Tesser R (2017) Fluid-solid adsorption in batch and continuous processing: a review and insights into modeling. Chem Eng Technol 40:799–820. https://doi.org/10.1002/ceat.201600582

    Article  CAS  Google Scholar 

  9. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9:45. https://doi.org/10.1007/s13201-019-0927-7

    Article  CAS  Google Scholar 

  10. Monazam ER, Spenik J, Shadle LJ (2013) Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI): kinetic analysis and breakthrough behavior. Chem Eng J 223:795–805. https://doi.org/10.1016/j.cej.2013.02.041

    Article  CAS  Google Scholar 

  11. Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239:229–246. https://doi.org/10.1016/j.desal.2008.03.020

    Article  CAS  Google Scholar 

  12. Chen HW, Chiou CS, Chang SH (2017) Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group. Powder Technol 311:426–431. https://doi.org/10.1016/j.powtec.2017.01.060

    Article  CAS  Google Scholar 

  13. Ariffin MM, Sohaimi NM, Yih BS, Saleh NM (2019) Magnetite nanoparticles coated with surfactant Sylgard 309 and its application as an adsorbent for paraben extraction from pharmaceutical and water samples. Anal Methods 11:4126–4136. https://doi.org/10.1039/c9ay01147a

    Article  CAS  Google Scholar 

  14. Lin L, Jiang W, Bechelany M, Nasr M, Jarvis J, Schaub T, Sapkota RR, Miele P, Wang H, Xu P (2019) Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: degradation products and mechanisms. Chemosphere 220:921–929. https://doi.org/10.1016/j.chemosphere.2018.12.184

    Article  CAS  Google Scholar 

  15. De Oliveira T, Guégan R, Thiebault T, Le Milbeau C, Muller F, Teixeira V, Giovanela M, Boussafir M (2017) Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions. J Hazard Mater 323:558–566. https://doi.org/10.1016/j.jhazmat.2016.05.001

    Article  CAS  Google Scholar 

  16. Awad AM, Jalab R, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas M, Mohammad AW (2020) Adsorption of organic pollutants by nanomaterial-based adsorbents: an overview. J Mol Liq 301:112335. https://doi.org/10.1016/j.molliq.2019.112335

    Article  CAS  Google Scholar 

  17. Martín J, Orta M d M, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2018) Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-functionalized high-charge swelling micas. Environ Res 164:488–494. https://doi.org/10.1016/j.envres.2018.03.037

    Article  CAS  Google Scholar 

  18. Durán E, Bueno S, Hermosín MC, Cox L, Gámiz B (2019) Optimizing a low added value bentonite as adsorbent material to remove pesticides from water. Sci Total Environ 672:743–751. https://doi.org/10.1016/j.scitotenv.2019.04.014

    Article  CAS  Google Scholar 

  19. Ma J, Lei Y, Khan MA, Wang F, Chu Y, Lei W, Xia M, Zhu S (2019) Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. Int J Biol Macromol 124:557–567. https://doi.org/10.1016/j.ijbiomac.2018.11.235

    Article  CAS  Google Scholar 

  20. Wu H, Xie H, He G, Guan Y, Zhang Y (2016) Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Appl Clay Sci 119:161–169. https://doi.org/10.1016/j.clay.2015.08.001

    Article  CAS  Google Scholar 

  21. Yan F, Spyrou K, Thomou E, Kumar S, Cao H, Stuart MCA, Pei Y, Gournis D, Rudolf P (2020) Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites. Environ Sci Nano. https://doi.org/10.1039/c9en00974d

  22. Gupta K, Huo JB, Yang JCE, Fu ML, Yuan B, Chen Z (2019) (MoS4)2− intercalated CAMoS4·LDH material for the efficient and facile sequestration of antibiotics from aqueous solution. Chem Eng J 355:637–649. https://doi.org/10.1016/j.cej.2018.08.200

    Article  CAS  Google Scholar 

  23. Ersan G, Apul OG, Perreault F, Karanfil T (2017) Adsorption of organic contaminants by graphene nanosheets: a review. Water Res 126:385–398. https://doi.org/10.1016/j.watres.2017.08.010

    Article  CAS  Google Scholar 

  24. Jiang L, Liu Y, Zeng G, Liu S, Hu X, Zhou L, Tan X, Liu N, Li M, Wen J (2018) Adsorption of estrogen contaminants (17Β-estradiol and 17Α-ethynylestradiol) by graphene nanosheets from water: effects of graphene characteristics and solution chemistry. Chem Eng J 339:296–302. https://doi.org/10.1016/j.cej.2017.12.034

    Article  CAS  Google Scholar 

  25. Balasubramani K, Sivarajasekar N, Naushad M (2020) Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling. J Mol Liq 301:112426. https://doi.org/10.1016/j.molliq.2019.112426

    Article  CAS  Google Scholar 

  26. Yu B, Bai Y, Ming Z, Yang H, Chen L, Hu X, Feng S, Yang ST (2017) Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Mater Chem Phys 198:283–290. https://doi.org/10.1016/j.matchemphys.2017.05.042

    Article  CAS  Google Scholar 

  27. Khan A, Wang J, Li J, Wang X, Chen Z, Alsaedi A, Hayat T, Chen Y, Wang X (2017) The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environ Sci Pollut Res 24:7938–7958. https://doi.org/10.1007/s11356-017-8388-8

    Article  CAS  Google Scholar 

  28. Dong S, Sun Y, Wu J, Wu B, Creamer AE, Gao B (2016) Graphene oxide as filter media to remove levofloxacin and lead from aqueous solution. Chemosphere 150:759–764. https://doi.org/10.1016/j.chemosphere.2015.11.075

    Article  CAS  Google Scholar 

  29. Jung C, Son A, Her N, Zoh KD, Cho J, Yoon Y (2015) Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review. J Ind Eng Chem 27:1–11. https://doi.org/10.1016/j.jiec.2014.12.035

    Article  CAS  Google Scholar 

  30. Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–1413. https://doi.org/10.1016/j.chemosphere.2011.01.057

    Article  CAS  Google Scholar 

  31. Wang Y, Ma J, Zhu J, Ye N, Zhang X, Huang H (2016) Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res 92:104–112. https://doi.org/10.1016/j.watres.2016.01.038

    Article  CAS  Google Scholar 

  32. Mohammadi Nodeh MK, Radfard M, Zardari LA, Rashidi Nodeh H (2018) Enhanced removal of naproxen from wastewater using silica magnetic nanoparticles decorated onto graphene oxide; parametric and equilibrium study. Sep Sci Technol 53:2476–2485. https://doi.org/10.1080/01496395.2018.1457054

    Article  CAS  Google Scholar 

  33. Marques SCR, Marcuzzo JM, Baldan MR, Mestre AS, Carvalho AP (2017) Pharmaceuticals removal by activated carbons: role of morphology on cyclic thermal regeneration. Chem Eng J 321:233–244. https://doi.org/10.1016/j.cej.2017.03.101

    Article  CAS  Google Scholar 

  34. Tzereme A, Christodoulou E, Kyzas GZ, Kostoglou M, Bikiaris DN, Lambropoulou DA (2019) Chitosan grafted adsorbents for diclofenac pharmaceutical compound removal from single-component aqueous solutions and mixtures. Polymers (Basel) 11:1–24. https://doi.org/10.3390/polym11030497

    Article  CAS  Google Scholar 

  35. Lu Y, Wang Z, Ouyang XK, Ji C, Liu Y, Huang F, Yang LY (2020) Fabrication of cross-linked chitosan beads grafted by polyethylenimine for efficient adsorption of diclofenac sodium from water. Int J Biol Macromol 145:1180–1188. https://doi.org/10.1016/j.ijbiomac.2019.10.044

    Article  CAS  Google Scholar 

  36. Valdés O, Ávila-Salas F, Marican A, Fuentealba N, Villaseñor J, Arenas-Salinas M, Argandoña Y, Durán-Lara EF (2018) Methamidophos removal from aqueous solutions using a super adsorbent based on crosslinked poly(vinyl alcohol) hydrogel. J Appl Polym Sci 135:1–10. https://doi.org/10.1002/app.45964

    Article  CAS  Google Scholar 

  37. Feng Z, Odelius K, Hakkarainen M (2018) Tunable chitosan hydrogels for adsorption: property control by biobased modifiers. Carbohydr Polym 196:135–145. https://doi.org/10.1016/j.carbpol.2018.05.029

    Article  CAS  Google Scholar 

  38. Sun X, Hu D, Yang L-Y, Wang N, Wang YG, Ouyang X-K (2019) Efficient adsorption of levofloxacin from aqueous solution using calcium alginate/metal organic frameworks composite beads. J Sol-Gel Sci Technol 91:353–363. https://doi.org/10.1007/s10971-019-05001-7

    Article  CAS  Google Scholar 

  39. Ma J, Jiang Z, Cao J, Yu F (2020) Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere 242:125188. https://doi.org/10.1016/j.chemosphere.2019.125188

    Article  CAS  Google Scholar 

  40. Fan L, Lu Y, Yang LY, Huang F, Ouyang XK (2019) Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core–shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J Colloid Interface Sci 554:48–58. https://doi.org/10.1016/j.jcis.2019.06.099

    Article  CAS  Google Scholar 

  41. Ahamad T, Naushad M, Alshahrani T, Al-hokbany N, Alshehri SM (2020) Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: kinetic and thermodynamic studies. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.025

  42. Liang XX, Omer AM, Hu ZH, Wang YG, Yu D, Ouyang XK (2019) Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 217:270–278. https://doi.org/10.1016/j.chemosphere.2018.11.023

    Article  CAS  Google Scholar 

  43. Toledo PVO, Martins BF, Pirich CL, Sierakowski MR, Neto ET, Petri DFS (2019) Cellulose based cryogels as adsorbents for organic pollutants. Macromol Symp 383:1–12. https://doi.org/10.1002/masy.201800013

    Article  CAS  Google Scholar 

  44. Benitez FJ, Acero JL, Real FJ, Roldan G, Rodriguez E (2011) Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. J Chem Technol Biotechnol 86:858–866. https://doi.org/10.1002/jctb.2600

    Article  CAS  Google Scholar 

  45. Homayoonfal M, Mehrnia MR (2014) Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Sep Purif Technol 130:74–83. https://doi.org/10.1016/j.seppur.2014.04.009

    Article  CAS  Google Scholar 

  46. Derakhsheshpoor R, Homayoonfal M, Akbari A, Mehrnia MR (2013) Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. J Environ Health Sci Eng 11:1–10

    Article  Google Scholar 

  47. Wanda EMM, Nyoni H, Mamba BB, Msagati TAM (2018) Application of silica and germanium dioxide nanoparticles/polyethersulfone blend membranes for removal of emerging micropollutants from water. Phys Chem Earth, Parts A/B/C 108:28–47. https://doi.org/10.1016/j.pce.2018.08.004

    Article  Google Scholar 

  48. Wanda EMM, Mamba BB, Msagati TAM (2017) Nitrogen-doped carbon nanotubes/polyethersulfone blend membranes for removing emerging micropollutants: water. Clean (Weinh) 45:1500889. https://doi.org/10.1002/clen.201500889

    Article  CAS  Google Scholar 

  49. Shakak M, Rezaee R, Maleki A, Jafari A, Safari M, Shahmoradi B, Daraei H, Lee S-M (2020) Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO 2) and performance evaluation for the removal of amoxicillin from aqueous solutions. Environ Technol Innov 17:1–14. https://doi.org/10.1016/j.eti.2019.100529

    Article  Google Scholar 

  50. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18:562–568. https://doi.org/10.1002/pat.918

    Article  CAS  Google Scholar 

  51. Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68. https://doi.org/10.1016/j.memsci.2008.07.010

    Article  CAS  Google Scholar 

  52. Zhu X, Bai R, Wee K-H, Liu C, Tang S-L (2010) Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. J Membr Sci 363:278–286. https://doi.org/10.1016/j.memsci.2010.07.041

    Article  CAS  Google Scholar 

  53. Huang J, Wang H, Zhang K (2014) Modification of PES membrane with Ag–SiO2: reduction of biofouling and improvement of filtration performance. Desalination 336:8–17. https://doi.org/10.1016/j.desal.2013.12.032

    Article  CAS  Google Scholar 

  54. Qi L, Liu Z, Wang N, Hu Y (2018) Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance. Appl Surf Sci 456:95–103. https://doi.org/10.1016/j.apsusc.2018.06.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Alejandra Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ollier, R.P., Villanueva, M.E., Copello, G.J., Alvarez, V.A., Sanchez, L.M. (2020). Engineered Nanomaterials for Emerging Contaminant Removal from Wastewater. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics