Skip to main content

3D Printing for Energy-Based Applications

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

3D printing has transitioned from the commercial and educational sectors toward tools for materials science. The technologies available for 3D printing have evolved rapidly, facilitating the incorporation of new materials and functionalities into filaments and resins. As the cost of 3D printing decreases, and the technologies supporting high-resolution printing become industry standard, the push toward 4D printing, a subcategory of 3D printing, that enables the fabrication of components through multiple techniques and materials will transform the energy sector. 3D printing is no longer limited to the use of plastics, and the fabrication of metal, graphene, and hybrid architectures for use as electrodes is now possible. Energy storage and fuel cells have made advances using 3D printing-assisted methods to prototype and evaluate innovative designs and compositions. This chapter describes the techniques used to develop 3D-printed batteries looking at the limitations of extrusion-based printing and some of the new ideas that aim to provide low-weight and high-capacity ergonomically designed batteries. This chapter also explores the development of 3D-printed devices for wearable energy storage with a focus on the nanomaterials that have the potential to transform 3D-printed energy-based applications. The chapter will conclude with an overview of some of the emerging technologies for the impact of additive manufacturing techniques in the design of fuel cells and photovoltaics. The methods detailed in this chapter provide an introduction to the principles of energy-based applications supported by 3D printing and the design, the fabrication, and the tailoring of those applications. Further comprehensive information can be found in the references attributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. BCC-Research (2019, November) Global Markets for 3D Printing. 140

    Google Scholar 

  2. BCC-Research (2020, March) 4D Printing: an emerging market

    Google Scholar 

  3. Bogue R (2013) 3D printing: the dawn of a new era in manufacturing? Assem Autom 33(4):307–311. https://doi.org/10.1108/aa-06-2013-055

    Article  Google Scholar 

  4. Bourell DL (2016) Sintering in Laser Sintering. JOM 68(3):885–889. https://doi.org/10.1007/s11837-015-1780-2

    Article  Google Scholar 

  5. Rajamani D, Balasubramanian E (2019) Investigation of sintering parameters on viscoelastic behaviour of selective heat sintered HDPE parts. J Appl Sci Eng 22(3):391–402. https://doi.org/10.6180/jase.201909_22(3).0001

    Article  Google Scholar 

  6. Asghar H, Shi S, Jiang DC, Tan Y, Rehman JU, Gilani ZA, An GY, Guo XL, Li PT (2018) Improvement of solar cell performance after oxygen removal by Electron beam melting. SILICON 10(5):1887–1891. https://doi.org/10.1007/s12633-017-9694-y

    Article  CAS  Google Scholar 

  7. Cheng M, Deivanayagam R, Shahbazian-Yassar R 3D Printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batteries Supercaps 17. https://doi.org/10.1002/batt.201900130

  8. Tiller B, Reid A, Zhu BT, Guerreiro J, Domingo-Roca R, Jackson JC, Windmill JFC (2019) Piezoelectric microphone via a digital light processing 3D printing process. Mater Des 165:7. https://doi.org/10.1016/j.matdes.2019.107593

    Article  CAS  Google Scholar 

  9. Park SH, Kaur M, Yun D, Kim WS (2018) Hierarchically designed Electron paths in 3D printed energy storage devices. Langmuir 34(37):10897–10904. https://doi.org/10.1021/acs.langmuir.8b02404

    Article  CAS  Google Scholar 

  10. Xing BH, Yao YX, Meng X, Zhao WM, Shen MH, Gao SY, Zhao Z (2020) Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing. Scr Mater 181:62–65. https://doi.org/10.1016/j.scriptamat.2020.02.004

    Article  CAS  Google Scholar 

  11. Gojzewski H, Guo Z, Grzelachowska W, Ridwan MG, Hempenius MA, Grijpma DW, Vancso GJ (2020) Layer-by-layer printing of photopolymers in 3D: how weak is the Interface? ACS Appl Mater Interfaces 12(7):8908–8914. https://doi.org/10.1021/acsami.9b22272

    Article  CAS  Google Scholar 

  12. Fu K, Yao YG, Dai JQ, Hu LB (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9). https://doi.org/10.1002/adma.201603486

  13. Acquah SFA, Leonhardt BE, Nowotarski MS, Magi JM, Chambliss KA, Venzel TES, Delekar SD, Al-Hariri LA (2016) Carbon nanotubes and graphene as additives in 3D printing. In: Carbon nanotubes – current progress of their polymer composites. InTech. https://doi.org/10.5772/63419

  14. Muth JT, Vogt DM, Truby RL, Menguc Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312. https://doi.org/10.1002/adma.201400334

    Article  CAS  Google Scholar 

  15. Koli V, Dhodamani A, More K, Acquah SFA, Panda DK, Pawar S, Delekar S (2017) A simple strategy for the anchoring of anatase titania on multi-walled carbon nanotubes for solar energy harvesting. Sol Energy 149:188–194. https://doi.org/10.1016/j.solener.2017.03.036

    Article  CAS  Google Scholar 

  16. Steven E, Saleh WR, Lebedev V, Acquah SFA, Laukhin V, Alamo RG, Brooks JS (2013) Carbon nanotubes on a spider silk scaffold. Nat Commun 4:8. https://doi.org/10.1038/ncomms3435

    Article  CAS  Google Scholar 

  17. Acquah SFA, Ventura DN, Rustan SE, Kroto HW (2013) Interconnecting carbon nanotubes for a sustainable economy. Syntheses and applications of carbon nanotubes and their composites. Intech Europe, Rijeka. https://doi.org/10.5772/51781

    Book  Google Scholar 

  18. Ventura DN, Stone RA, Chen KS, Hariri HH, Riddle KA, Fellers TJ, Yun CS, Strouse GF, Kroto HW, Acquah SFA (2010) Assembly of cross-linked multi-walled carbon nanotube mats. Carbon 48(4):987–994. https://doi.org/10.1016/j.carbon.2009.11.016

    Article  CAS  Google Scholar 

  19. Ventura DN, Li S, Baker CA, Breshike CJ, Spann AL, Strouse GF, Kroto HW, Acquah SFA (2012) A flexible cross-linked multi-walled carbon nanotube paper for sensing hydrogen. Carbon 50(7):2672–2674. https://doi.org/10.1016/j.carbon.2012.02.011

    Article  CAS  Google Scholar 

  20. Zhang YH, Cui YH, Wang S, Zhao XW, Wang FM, Wu GH (2020) Effect of microwave treatment on bending properties of carbon nanotube/wood plastic composites by selective laser sintering. Mater Lett 267:4. https://doi.org/10.1016/j.matlet.2020.127547

    Article  CAS  Google Scholar 

  21. Shofner ML, Lozano K, Rodriguez-Macias FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89(11):3081–3090. https://doi.org/10.1002/app.12496

    Article  CAS  Google Scholar 

  22. Torres J, Cotelo J, Karl J, Gordon AP (2015) Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67(5):1183–1193. https://doi.org/10.1007/s11837-015-1367-y

    Article  CAS  Google Scholar 

  23. Arif MF, Alhashmi H, Varadarajan KM, Koo JH, Hart AJ, Kumar S (2020) Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos Pt B-Eng 184:10. https://doi.org/10.1016/j.compositesb.2019.107625

    Article  CAS  Google Scholar 

  24. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Pt A-Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  CAS  Google Scholar 

  25. Yu WW, Zhang J, Wu JR, Wang XZ, Deng YH (2017) Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling. J Appl Polym Sci 134(15):11. https://doi.org/10.1002/app.44703

    Article  CAS  Google Scholar 

  26. Chavez LA, Regis JE, Delfin LC, Rosales CAG, Kim H, Love N, Liu YT, Lin YR (2019) Electrical and mechanical tuning of 3D printed photopolymer-MWCNT nanocomposites through in situ dispersion. J Appl Polym Sci 136(22):7. https://doi.org/10.1002/app.47600

    Article  CAS  Google Scholar 

  27. Goodarzi S, Da Ros T, Conde J, Sefat F, Mozafari M (2017) Fullerene: biomedical engineers get to revisit an old friend. Mater Today 20(8):460–480. https://doi.org/10.1016/j.mattod.2017.03.017

    Article  CAS  Google Scholar 

  28. Acquah SFA, Penkova AV, Markelov DA, Semisalova AS, Leonhardt BE, Magi JM (2017) Review-the beautiful molecule: 30 years of C-60 and its derivatives. ECS J Solid State Sci Technol 6(6):M3155–M3162. https://doi.org/10.1149/2.0271706jss

    Article  CAS  Google Scholar 

  29. Penkova AV, Acquah SFA, Dmitrenko ME, Sokolova MP, Mikhailova ME, Polyakov ES, Ermakov SS, Markelov DA, Roizard D (2016) Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles. Mater Des 96:416–423. https://doi.org/10.1016/j.matdes.2016.02.046

    Article  CAS  Google Scholar 

  30. Penkova AV, Acquah SFA, Sokolova MP, Dmitrenko ME, Toikka AM (2015) Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C-60(OH)12. J Membr Sci 491:22–27. https://doi.org/10.1016/j.memsci.2015.05.011

    Article  CAS  Google Scholar 

  31. Wallace GG, Chen J, Li D, Moulton SE, Razal JM (2010) Nanostructured carbon electrodes. J Mater Chem 20(18):3553–3562. https://doi.org/10.1039/b918672g

    Article  CAS  Google Scholar 

  32. Penkova AV, Acquah SFA, Piotrovskiy LB, Markelov DA, Semisalova AS, Kroto HW (2017) Fullerene derivatives as nano-additives in polymer composites. Russ Chem Rev 86(6):530–566. https://doi.org/10.1070/rcr4712

    Article  CAS  Google Scholar 

  33. Park SH, Su RT, Jeong J, Guo SZ, Qiu KY, Joung D, Meng FB, McAlpine MC (2018) 3D printed polymer photodetectors. Adv Mater 30(40). https://doi.org/10.1002/adma.201803980

  34. Accorsi J, Yu M (1998) Carbon black. In: Pritchard G (ed) Plastics additives: an A-Z reference. Springer, Dordrecht, pp 153–161. https://doi.org/10.1007/978-94-011-5862-6_18

    Chapter  Google Scholar 

  35. Kim JH, Hong JS, Ahn KH Design of electrical conductive poly(lactic acid)/carbon black composites by induced particle aggregation. J Appl Polym Sci 11. https://doi.org/10.1002/app.49295

  36. Liu ZW, Ling FW, Diao XY, Fu MR, Bai HW, Zhang Q, Fu Q (2020) Stereocomplex-type polylactide with remarkably enhanced melt-processability and electrical performance via incorporating multifunctional carbon black. Polymer 188:11. https://doi.org/10.1016/j.polymer.2019.122136

    Article  CAS  Google Scholar 

  37. Vaneckova E, Bousa M, Lachmanova SN, Rathousky J, Gal M, Sebechlebska T, Kolivoska V (2020) 3D printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J Electroanal Chem 857:8. https://doi.org/10.1016/j.jelechem.2019.113745

    Article  CAS  Google Scholar 

  38. Joao AF, Squissato AL, Richter EM, Munoz RAA (2020) Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode. Anal Bioanal Chem. https://doi.org/10.1007/s00216-020-02513-y

  39. Bin Hamzah HH, Keattch O, Covill D, Patel BA (2018) The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes. Sci Rep 8:8. https://doi.org/10.1038/s41598-018-27188-5

    Article  CAS  Google Scholar 

  40. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  41. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  42. Jeon H, Kim Y, Yu WR, Lee JU (2020) Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing. Compos Pt B-Eng 189:13. https://doi.org/10.1016/j.compositesb.2020.107912

    Article  CAS  Google Scholar 

  43. Camargo JC, Machado AR, Almeida EC, Silva E (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Technol 103(5–8):2423–2443. https://doi.org/10.1007/s00170-019-03532-5

    Article  Google Scholar 

  44. Sorocki J, Koryciak S, Piekarz I, Gruszczynski S, Wincza K, Ieee (2017) Investigation on additive manufacturing with conductive PLA filament for realisation of Low-loss Suspended Microstrip Microwave Circuits. 2017 International conference on electrical, Electronics and System Engineering. Ieee, New York

    Google Scholar 

  45. Cardoso RM, Silva PRL, Lima AP, Rocha DP, Oliveira TC, do Prado TM, Fava EL, Fatibello-Filho O, Richter EM, RAA M (2020) 3D-printed graphene/polylactic acid electrode for bioanalysis: biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sens Actuator B-Chem 307:9. https://doi.org/10.1016/j.snb.2019.127621

    Article  CAS  Google Scholar 

  46. Azhari A, Toyserkani E, Villain C (2015) Additive manufacturing of graphene-hydroxyapatite nanocomposite structures. Int J Appl Ceram Technol 12(1):8–17. https://doi.org/10.1111/ijac.12309

    Article  CAS  Google Scholar 

  47. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5(1):11181. https://doi.org/10.1038/srep11181

    Article  Google Scholar 

  48. Foster CW, Down MP, Zhang Y, Ji X, Rowley-Neale SJ, Smith GC, Kelly PJ, Banks CE (2017) 3D printed graphene based energy storage devices. Sci Rep 7(1):42233. https://doi.org/10.1038/srep42233

    Article  Google Scholar 

  49. Rae A, Hammer-Fritzinger D (2006) Creating metal and nonmetal nanosystems using conductive jettable inks. Solid State Technol 49(4):53–55

    CAS  Google Scholar 

  50. Kamyshny A, Magdassi S (2019) Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 48(6):1712–1740. https://doi.org/10.1039/c8cs00738a

    Article  CAS  Google Scholar 

  51. Reyes C, Somogyi R, Niu S, Cruz MA, Yang FC, Catenacci MJ, Rhodes CP, Wiley BJ (2018) Three-dimensional printing of a complete Lithium ion battery with fused filament fabrication. ACS Appl Energ Mater 1(10):5268–5279. https://doi.org/10.1021/acsaem.8b00885

    Article  CAS  Google Scholar 

  52. Guessasma S, Belhabib S, Nouri H (2019) Microstructure and mechanical performance of 3D printed Wood-PLA/PHA using fused deposition modelling: effect of printing temperature. Polymers 11(11). https://doi.org/10.3390/polym11111778

  53. Walker JS, Arnold J, Shrestha C, Smith D (2020) Antibacterial silver submicron wire-polylactic acid composites for fused filament fabrication. Rapid Prototyping J 26(1):32–38. https://doi.org/10.1108/rpj-04-2019-0100

    Article  Google Scholar 

  54. Bayraktar I, Doganay D, Coskun S, Kaynak C, Akca G, Unalan HE (2019) 3D printed antibacterial silver nanowire/polylactide nanocomposites. Compos Pt B-Eng 172:671–678. https://doi.org/10.1016/j.compositesb.2019.05.059

    Article  CAS  Google Scholar 

  55. Jahangir N, Cleeman J, Hwang HJ, Malhotra R (2019) Towards out-of-chamber damage-free fabrication of highly conductive nanoparticle-based circuits inside 3D printed thermally sensitive polymers. Addit Manuf 30. https://doi.org/10.1016/j.addma.2019.100886

  56. Fafenrot S, Grimmelsmann N, Wortmann M, Ehrmann A (2017) Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 10(10). https://doi.org/10.3390/ma10101199

  57. Saleh MS, Li J, Park J, Panat R (2018) 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit Manuf 23:70–78. https://doi.org/10.1016/j.addma.2018.07.006

    Article  CAS  Google Scholar 

  58. Ho CC, Murata K, Steingart DA, Evans JW, Wright PK (2009) A super ink jet printed zinc-silver 3D microbattery. J Micromech Microeng 19(9). https://doi.org/10.1088/0960-1317/19/9/094013

  59. Huang WH, Finnerty C, Sharp R, Wang K, Balili B (2017) High-performance 3D printed microtubular solid oxide fuel cells. Adv Mater Technol 2(4):5. https://doi.org/10.1002/admt.201600258

    Article  CAS  Google Scholar 

  60. You J, Preen RJ, Bull L, Greenman J, Ieropoulos I (2017) 3D printed components of microbial fuel cells: towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustain Energy Technol Assess 19:94–101. https://doi.org/10.1016/j.seta.2016.11.006

    Article  Google Scholar 

  61. Winfield J, Ieropoulos I, Greenman J (2012) Investigating a cascade of seven hydraulically connected microbial fuel cells. Bioresour Technol 110:245–250. https://doi.org/10.1016/j.biortech.2012.01.095

    Article  CAS  Google Scholar 

  62. Vak D, Hwang K, Faulks A, Jung YS, Clark N, Kim DY, Wilson GJ, Watkins SE (2015) 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells. Adv Energy Mater 5(4):8. https://doi.org/10.1002/aenm.201401539

    Article  CAS  Google Scholar 

  63. Ahn BY, Duoss EB, Motala MJ, Guo XY, Park SI, Xiong YJ, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921):1590–1593. https://doi.org/10.1126/science.1168375

    Article  CAS  Google Scholar 

  64. Knott A, Makarovskiy O, O’Shea J, Wu YP, Tuck C (2018) Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells. Sol Energy Mater Sol Cells 180:103–109. https://doi.org/10.1016/j.solmat.2018.02.028

    Article  CAS  Google Scholar 

  65. van Dijk L, Paetzold UW, Blab GA, Schropp REI, Di Vece M (2016) 3D-printed external light trap for solar cells. Prog Photovoltaics 24(5):623–633. https://doi.org/10.1002/pip.2702

    Article  CAS  Google Scholar 

  66. van Dijk L, Marcus EAP, Oostra AJ, Schropp REI, Di Vece M (2015) 3D-printed concentrator arrays for external light trapping on thin film solar cells. Sol Energy Mater Sol Cells 139:19–26. https://doi.org/10.1016/j.solmat.2015.03.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Acquah, S.F.A. (2020). 3D Printing for Energy-Based Applications. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_161-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_161-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics