Skip to main content

Fabrication of Polyamide Thin Layer Membranes for Water Treatment

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Polyamide membranes play an important role in water treatment applications. Accordingly, many efforts have been done to modify this kind of membranes to overcome the desired structure and performance. There’s a tendency to decrease polyamide thin layer thickness to a few nanometers, while their performance in water permeability and salt rejection improves. In this chapter we present some of the methods that lead to fabricate high performance and very thin polyamide layers for separation and treatment. In fabrication of such membranes, novel methods have been discussed. Using nanostructure layers and macromolecules, deposition of nanocomposites and vacuum filtration are some of these methods. Some other special polyamide thin layer membranes are chlorine-resistant ones which enter new co-polymers in polyamide chain structures. Finally, the most interesting kind of thin-film membranes is free-standing polyamide layer which forms in the interface of used phases without any support layer or backbone. This kind gives an opportunity to change the support after the formation of polyamide layer and subtilize its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ali ME, Wang L, Wang X, Feng X (2016) Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386:67–76

    Article  CAS  Google Scholar 

  2. Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241

    Article  CAS  Google Scholar 

  3. Bano S, Mahmood A, Kim SJ, Lee KH (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3(5):2065–2071

    Article  CAS  Google Scholar 

  4. Bánsági T, Vanag VK, Epstein IR (2011) Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns. Science 331(6022):1309–1312

    Article  Google Scholar 

  5. Cadotte JE (1985) Evolution of composite reverse osmosis membranes, Materials Science of Synthetic Membranes, Chapter 12, pp 273–294

    Google Scholar 

  6. Cadotte JE, Petersen RJ (1981) Thin-film composite reverse-osmosis membranes: origin, development, and recent advances, Synthetic Membranes, Chapter 21, pp 305–326

    Google Scholar 

  7. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G …, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Google Scholar 

  8. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12(1):30–39

    Article  CAS  Google Scholar 

  9. Horváth J, Szalai I, De Kepper P (2009) An experimental design method leading to chemical Turing patterns. Science 324(5928):772–775

    Article  Google Scholar 

  10. Huang SH, Hsu CJ, Liaw DJ, Hu CC, Lee KR, Lai JY (2008) Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. J Membr Sci 307(1):73–81

    Article  CAS  Google Scholar 

  11. Karan S, Jiang Z, Livingston AG (2015) Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241):1347–1351

    Article  CAS  Google Scholar 

  12. Lai GS, Lau WJ, Goh PS, Ismail AF, Tan YH, Chong CY, …, Awad S (2018) Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation. Chem Eng J 344:524–534

    Google Scholar 

  13. Lai GS, Lau WJ, Goh PS, Tan YH, Ng BC, Ismail AF (2019) A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties. Arab J Chem 12(1):75–87

    Article  CAS  Google Scholar 

  14. Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control – a review. Desalination 245(1–3):321–348

    Article  CAS  Google Scholar 

  15. Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199

    Article  CAS  Google Scholar 

  16. Lay WC, Zhang J, Tang C, Wang R, Liu Y, Fane AG (2012) Factors affecting flux performance of forward osmosis systems. J Membr Sci 394:151–168

    Article  Google Scholar 

  17. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination – development to date and future potential. J Membr Sci 370(1–2):1–22

    Article  CAS  Google Scholar 

  18. Li D, Wang H (2010) Recent developments in reverse osmosis desalination membranes. J Mater Chem 20(22):4551–4566

    Article  CAS  Google Scholar 

  19. Li Y, Su Y, Dong Y, Zhao X, Jiang Z, Zhang R, Zhao J (2014) Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination 333(1):59–65

    Article  CAS  Google Scholar 

  20. Lu X, Ye J, Zhang D, Xie R, Bogale RF, Sun Y, …, Ning G (2014) Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem 138:114–121

    Google Scholar 

  21. Mansourpanah Y, Habili EM (2013) Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation. J Membr Sci 430:158–166

    Article  CAS  Google Scholar 

  22. Mansourpanah Y, Jafari Z (2015) Efficacy of different generations and concentrations of PAMAM–NH2 on the performance and structure of TFC membranes. React Funct Polym 93:178–189

    Article  CAS  Google Scholar 

  23. Mansourpanah Y, Rashnou PM (2017) Influence of sodium tripolyphosphate concentration on characteristics and performance of polyamide thin layer membrane in Cu (II) removal. J Membr Sci Res 3(1):36–41

    Google Scholar 

  24. Mansourpanah Y, Samimi M (2017) Preparation and characterization of a low-pressure efficient polyamide multi-layer membrane for water treatment and dye removal. J Ind Eng Chem 53:93–104

    Article  CAS  Google Scholar 

  25. Mansourpanah Y, Alizadeh K, Madaeni SS, Rahimpour A, Afarani HS (2011) Using different surfactants for changing the properties of poly(piperazineamide) TFC nanofiltration membranes. Desalination 271(1–3):169–177

    Article  CAS  Google Scholar 

  26. Mansourpanah Y, Madaeni SS, Rahimpour A (2009) Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J Membr Sci 343(1–2):219–228

    Article  CAS  Google Scholar 

  27. Mansourpanah Y, Rahimpour A, Tabatabaei M, Bennett L (2017) Self-antifouling properties of magnetic Fe2O3/SiO2-modified poly (piperazine amide) active layer for desalting of water: characterization and performance. Desalination 419:79–87

    Article  CAS  Google Scholar 

  28. Mansourpanah Y, Shahebrahimi H, Kolvari E (2015) PEG-modified GO nanosheets, a desired additive to increase the rejection and antifouling characteristics of polyamide thin layer membranes. Chem Eng Res Des 104:530–540

    Article  CAS  Google Scholar 

  29. Mi YF, Zhao FY, Guo YS, Weng XD, Ye CC, An QF (2017) Constructing zwitterionic surface of nanofiltration membrane for high flux and antifouling performance. J Membr Sci 541:29–38

    Article  CAS  Google Scholar 

  30. Misdan N, Lau WJ, Ismail AF, Matsuura T, Rana D (2014) Study on the thin film composite poly (piperazine-amide) nanofiltration membrane: impacts of physicochemical properties of substrate on interfacial polymerization formation. Desalination 344:198–205

    Article  CAS  Google Scholar 

  31. Morgan PW, Kwolek SL (1959) Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J Polym Sci 40(137):299–327

    Article  CAS  Google Scholar 

  32. Morgan PW (1965) Condensation polymers: by interfacial and solution methods, vol 10. Interscience Publishers

    Google Scholar 

  33. Nadler R, Srebnik S (2008) Molecular simulation of polyamide synthesis by interfacial polymerization. J Membr Sci 315(1–2):100–105

    Article  CAS  Google Scholar 

  34. Nightingale ER Jr (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63(9):1381–1387

    Article  CAS  Google Scholar 

  35. Oh NW, Jegal J, Lee KH (2001) Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. Preparation and modification of PAN supports. J Appl Polym Sci 80(10):1854–1862

    Article  CAS  Google Scholar 

  36. Pacheco F, Sougrat R, Reinhard M, Leckie JO, Pinnau I (2016) 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. J Membr Sci 501:33–44

    Article  CAS  Google Scholar 

  37. Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83(1):81–150

    Article  CAS  Google Scholar 

  38. Petersen RJ, Cadotte JE (1990) Thin film composite reverse osmosis membranes. In: Handbook of industrial membrane technology, pp 307–348

    Google Scholar 

  39. Rahimpour A, Madaeni SS, Mansourpanah Y (2007) The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration. J Membr Sci 296(1–2):110–121

    Article  CAS  Google Scholar 

  40. Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY (2014) Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131(19)

    Google Scholar 

  41. Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY (2014) Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metalorganic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131(19):40815

    Google Scholar 

  42. Saha NK, Joshi SV (2009) Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J Membr Sci 342(1–2):60–69

    Article  CAS  Google Scholar 

  43. Schaefer A, Fane AG, Waite TD (eds) (2005) Nanofiltration: principles and applications, Elsevier, Oxford, UK

    Google Scholar 

  44. Soltani Afarani H, Mansourpanah Y (2016) Physical surface modification of nanoporous TFC membranes using UV irradiation for water desalting; determination of best conditions. Desalin Water Treat 57(42):19677–19689

    Google Scholar 

  45. Tan Z, Chen S, Peng X, Zhang L, Gao C (2018) Polyamide membranes with nanoscale Turing structures for water purification. Science 360(6388):518–521

    Article  CAS  Google Scholar 

  46. Tang CY, Kwon YN, Leckie JO (2007) Probing the nano-and micro-scales of reverse osmosis membranes – A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J Membr Sci 287(1):146–156

    Google Scholar 

  47. Turing AM (1952) The chemical basis of morphogenesis, Philos Trans R Soc B 237:37–72

    Google Scholar 

  48. Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P (2016) Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov Today 21(6):1009–1018

    Article  CAS  Google Scholar 

  49. Xia S, Yao L, Zhao Y, Li N, Zheng Y (2015) Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal. Chem Eng J 280:720–727

    Article  CAS  Google Scholar 

  50. Zirehpour A, Rahimpour A, Arabi Shamsabadi A, Sharifian Gh M, Soroush M (2017) Mitigation of thin-film composite membrane biofouling via immobilizing nano-sized biocidal reservoirs in the membrane active layer. Environ Sci Technol 51(10):5511–5522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Mansourpanah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roozbehani, N., Mansourpanah, Y. (2021). Fabrication of Polyamide Thin Layer Membranes for Water Treatment. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics