Skip to main content

Functional Metagenomics of Human Intestinal Microbiome β-Glucuronidase Activity

  • Reference work entry
  • First Online:
Encyclopedia of Metagenomics
  • 203 Accesses

Definitions

β-glucuronidases: Enzymes belonging to glycoside hydrolase family 2 that catalyze the cleavage of β-d-glucuronic acid residues from a range of different compounds.

Functional metagenomics: Screening of metagenomic DNA cloned into heterologous hosts for the expression of specific functions.

Sequence-based metagenomics/metagenomic sequence mining: In silico analysis of metagenomic sequence libraries for the presence of genes with sequence similarity to known genes.

Degenerate PCR: Usage of a mixture of similar PCR primers designed to amplify the same gene from different organisms, by targeting highly conserved gene regions.

Introduction

Intestinal β-glucuronidases (EC 3.2.1.31) are among the major enzyme families associated with chemical detoxification (Fig. 1). They catalyze the hydrolysis of β-glucuronides naturally present in the human diet, in drugs, or those produced in the liver by glucuronidation via UDP-glucuronosyltransferases (EC 2.4.1.17), which is the major...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardonnet N, Blanco C. uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett. 1992;72:243–7.

    CAS  PubMed  Google Scholar 

  • Beaud D, Tailliez P, Anba-Mondoloni J. Genetic characterization of the beta-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology. 2005;151:2323–30.

    CAS  PubMed  Google Scholar 

  • Cecchini DA, Laville E, Laguerre S, Patrick Robe P, Leclerc M, Doré J, Henrissat B, Remaud-Siméon M, Pierre Monsan P, Potocki-Véronèse G. Functional metagenomics reveals novel pathways of prebiotic metabolization by human gut bacteria. PLoS ONE. 2013;8:1–9.

    Google Scholar 

  • Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol. 2008;66:487–95.

    CAS  PubMed  Google Scholar 

  • Flores R, Shi J, Gail MH, Gajer P, Ravel J, Goedert JJ. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE. 2012;7:e39745.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabor EM, Alkema WB, Janssen DB. Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol. 2004;6:879–86.

    CAS  PubMed  Google Scholar 

  • Gloux K, Leclerc M, Iliozer H, L’haridon R, Manichanh C, Corthier G, Nalin R, Blottière HM, Doré J. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol. 2007;73:3734–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A. 2011;108:4539–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 2013;69:21–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68:669–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–9.

    CAS  PubMed  Google Scholar 

  • Hayashi H, Abe T, Sakamoto M, Ohara H, Ikemura T, Sakka K, Benno Y. Direct cloning of genes encoding novel xylanases from the human gut. Can J Microbiol. 2005;51:251–9.

    CAS  PubMed  Google Scholar 

  • Henrissat B, Cantarel B, Coutinho P. Carbohydrate-active enzymes database, metagenomic expert resource. http://www.springerreference.com/index.chapterbid/303280

  • Humblot C, Murkovic M, Rigottier-Gois L, Bensaada M, Bouclet A, Andrieux C, Anba J, Rabot S. Beta-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis. 2007;28:2419–25.

    CAS  PubMed  Google Scholar 

  • Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch Pharm Res. 1998;21:17–23.

    CAS  PubMed  Google Scholar 

  • Kim DH, Hong SW, Kim BT, Bae EA, Park HY, Han MJ. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch Pharm Res. 2000;23:172–7.

    CAS  PubMed  Google Scholar 

  • Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif. 2006;45:315–23.

    CAS  PubMed  Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:327–31.

    Google Scholar 

  • McBain AJ, Macfarlane GT. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol. 1998;47:407–16.

    CAS  PubMed  Google Scholar 

  • McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ, Ince J, Johnstone A, Lobley G, Flint HJ, Louis P. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol. 2012;14:1876–87.

    CAS  PubMed  Google Scholar 

  • Morotomi M, Nanno M, Watanabe T, Sakurai T, Mutai M. Mutagenic activation of biliary metabolites of 1-nitropyrene by intestinal microflora. Mutat Res. 1985;149:171–8.

    CAS  PubMed  Google Scholar 

  • Nanno M, Morotomi M, Takayama H, Kuroshima T, Tanaka R, Mutai M. Mutagenic activation of biliary metabolites of benzo(a)pyrene by beta-glucuronidase-positive bacteria in human faeces. J Med Microbiol. 1986;22:351–5.

    CAS  PubMed  Google Scholar 

  • Piel J, Butzke D, Fusetani N, Hui D, Platzer M, Wen G, Matsunaga S. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod. 2005;68:472–9.

    CAS  PubMed  Google Scholar 

  • Qin J, Ruiqiang L, Raes J, Arumugam M, Solvsten K, Burgdorf, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D, Li J, Xu J, LI S, Li D, Cao J, Wang B, Liang H, Zheng H, Yie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Zhang X, Li S, Yang H, Wang J, Brunak S, Brunak J, Dore J, Guraner F, Kristiansen K, Pedersen O, Parkhill J, Wessenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalog established by deep metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ram JL, Ritchie RP, Fang J, Gonzales FS, Selegean JP. Sequence-based source tracking of Escherichia coli based on genetic diversity of beta-glucuronidase. J Environ Qual. 2004;33:1024–32.

    Google Scholar 

  • Rod TO, Midtvedt T. Origin of intestinal beta-glucuronidase in germfree, monocontaminated and conventional rats. Acta Pathol Microbiol Scand. 1977;85([B]):271–6.

    CAS  Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66:2541–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell WM, Klaenhammer TR. Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Appl Environ Microbiol. 2001;67:1253–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salleh HM, Müllegger J, Reid SP, Chan WY, Hwang J, Warren RA, Withers SG. Cloning and characterization of Thermotoga maritima beta-glucuronidase. Carbohydr Res. 2006;341:49–59.

    CAS  PubMed  Google Scholar 

  • Schmelz EM, Bushnev AS, Dillehay DL, Sullards MC, Liotta DC, Merrill Jr AH. Ceramide-beta-d-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. Cancer Res. 1999;59:5768–72.

    CAS  PubMed  Google Scholar 

  • Streit WR, Schmitz RA. Metagenomics-the key to the uncultured microbes. Curr Opin Microbiol. 2004;7:492–8.

    CAS  PubMed  Google Scholar 

  • Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Munoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–84.

    PubMed  Google Scholar 

  • Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M, Doré J, Monsan M, Remaud-Simeon M, Potocki-Veronese G. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res. 2010;20:1605–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tryland I, Fiksdal L. Enzyme characteristics of beta-d-galactosidase- and beta-d-glucuronidase-positive bacteria and their interference in rapid methods for detection of waterborne coliforms and Escherichia coli. Appl Environ Microbiol. 1998;64:1018–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581–616.

    CAS  PubMed  Google Scholar 

  • Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol. 2004;70:7229–35.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Doré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Louis, P., Doré, J. (2015). Functional Metagenomics of Human Intestinal Microbiome β-Glucuronidase Activity. In: Nelson, K.E. (eds) Encyclopedia of Metagenomics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7478-5_749

Download citation

Publish with us

Policies and ethics