Skip to main content

Developmental Biology of Melanocytes

  • Reference work entry
  • First Online:
Melanoma
  • 1090 Accesses

Abstract

Apart from embryonic stem cells (ESCs) in the blastocyst, neural crest stem cells (NCSCs) in vertebrate embryos represent the stem cell population in our body with the broadest developmental potential, generating most of the neurons and glia of the peripheral nervous system (PNS) as well as various nonneural cell types, such as smooth muscle cells in the outflow tract of the heart, craniofacial bone, and cartilage and, in particular, melanocytes in the skin. It is assumed that a third of all congenital birth defects are due to failures in neural crest development, illustrating the significance of this stem cell population. Moreover, processes underlying melanocyte development appear to be recapitulated, at least partially, during formation of melanoma, the most aggressive skin tumor. For instance, it has recently been shown that an embryonic NCSC gene expression signature is reactivated upon tumor initiation in a zebrafish model of melanoma, suggesting a functional involvement of a NCSC program in tumors originating from neural crest derivatives. Thus, to gain insights into melanoma biology, it is important to understand the mechanisms regulating NCSC and melanocyte development, as outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379

    Article  CAS  PubMed  Google Scholar 

  • Adameyko I, Lallemend F, Furlan A, Zinin N, Aranda S, Kitambi SS, Blanchart A, Favaro R, Nicolis S, Lubke M, Muller T, Birchmeier C, Suter U, Zaitoun I, Takahashi Y, Ernfors P (2012) Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139:397–410

    Article  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Saint-Germain N, Gyda M, Magner-Fink E, Lee YH, Credidio C, Saint-Jeannet JP (2003) Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. Dev Biol 259:19–33

    Article  CAS  PubMed  Google Scholar 

  • Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322

    Article  CAS  PubMed  Google Scholar 

  • Baroffio A, Dupin E, LeDouarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A 85:5325–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejar J, Hong Y, Schartl M (2003) Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development 130:6545–6553

    Article  CAS  PubMed  Google Scholar 

  • Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, Longaker MT, Weissman IL (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, Warburg M, Hennekam RC, Read AP, Wegner M, Goossens M (1999) A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet 8:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Caignec CL, Wegner M, Goossens M (2000) Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9:1907–1917

    Article  CAS  PubMed  Google Scholar 

  • Bondurand N, Natarajan D, Barlow A, Thapar N, Pachnis V (2006) Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133:2075–2086

    Article  CAS  PubMed  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronner M (2015) Confetti clarifies controversy: neural crest stem cells are multipotent. Cell Stem Cell 16:217–218

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M, Fraser S (1988) Cell lineage analysis shows multipotentiality of some avian neural crest cells. Nature 335:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    Article  CAS  PubMed  Google Scholar 

  • Budi EH, Patterson LB, Parichy DM (2011) Post-embryonic nerve-associated precursors to adult pigment cells: genetic requirements and dynamics of morphogenesis and differentiation. PLoS Genet 7:e1002044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C (2015) NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science 348:1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calloni GW, Le Douarin NM, Dupin E (2009) High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities. Proc Natl Acad Sci U S A 106:8947–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camp E, Lardelli M (2001) Tyrosinase gene expression in zebrafish embryos. Dev Genes Evol 211:150–153

    Article  CAS  PubMed  Google Scholar 

  • Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8:179–192

    Article  CAS  PubMed  Google Scholar 

  • Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M, Sommer L (2011) Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71:3098–3109

    Article  CAS  PubMed  Google Scholar 

  • Cohen AM, Konigsberg IR (1975) A clonal approach to the problem of neural crest determination. Dev Biol 46:262–280

    Article  CAS  PubMed  Google Scholar 

  • Cooper CD, Raible DW (2009) Mechanisms for reaching the differentiated state: insights from neural crest-derived melanocytes. Semin Cell Dev Biol 20:105–110

    Article  CAS  PubMed  Google Scholar 

  • Curran K, Raible DW, Lister JA (2009) Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Dev Biol 332:408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM, Raible DW (2010) Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Dev Biol 344:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M (2011) Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delfino-Machin M, Chipperfield TR, Rodrigues FS, Kelsh RN (2007) The proliferating field of neural crest stem cells. Dev Dyn 236:3242–3254

    Article  CAS  PubMed  Google Scholar 

  • Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A, Demirkan N, Bastian BC, Goding CR, Larue L (2007) Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 21:2923–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396:370–373

    Article  CAS  PubMed  Google Scholar 

  • Dorsky RI, Raible DW, Moon RT (2000) Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev 14:158–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci U S A 97:10050–10055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin E, Sommer L (2012) Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 366:83–95

    Article  CAS  PubMed  Google Scholar 

  • Dupin E, Glavieux C, Vaigot P, Le Douarin NM (2000) Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci U S A 97:7882–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM (2003) Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci U S A 100:5229–5233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin E, Calloni GW, Le Douarin NM (2010) The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle 9:238–249

    Article  CAS  PubMed  Google Scholar 

  • Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, Geisler R, Haffter P, Kelsh RN (2001) Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128:4113–4125

    CAS  PubMed  Google Scholar 

  • Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN (2003) Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development 130:2809–2818

    Article  CAS  PubMed  Google Scholar 

  • Erickson CA, Duong ED, Tosney KW (1992) Descriptive and experimental analysis of the dispersion of neural crest cells along the dorso-lateral path and their entry into ectoderm in the chick embryo. Dev Biol 151:251–272

    Article  CAS  PubMed  Google Scholar 

  • Ernfors P (2010) Cellular origin and developmental mechanisms during the formation of skin melanocytes. Exp Cell Res 316:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Etchevers H (2011) Primary culture of chick, mouse or human neural crest cells. Nat Protoc 6:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Frank E, Sanes JR (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111:895–908

    CAS  PubMed  Google Scholar 

  • Fuchs S, Herzog D, Sumara G, Buchmann-Moller S, Civenni G, Wu X, Chrostek-Grashoff A, Suter U, Ricci R, Relvas JB, Brakebusch C, Sommer L (2009) Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1. Cell Stem Cell 4:236–247

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Koentges G, Lumsden A (1996) Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol Cell Neurosci 8:76–83

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn L, Suter U, Sommer L (1999) P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-ß family factors. Development 126:3781–3794

    CAS  PubMed  Google Scholar 

  • Hari L, Brault V, Kléber M, Lee HY, Ille F, Leimeroth R, Paratore C, Suter U, Kemler R, Sommer L (2002) Lineage-specific requirements of ß-catenin in neural crest development. J Cell Biol 159:867–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hari L, Miescher I, Shakhova O, Suter U, Chin L, Taketo M, Richardson WD, Kessaris N, Sommer L (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139:2107–2117

    Article  CAS  PubMed  Google Scholar 

  • Harris ML, Hall R, Erickson CA (2008) Directing pathfinding along the dorso-lateral path – the role of EDNRB2 and EphB2 in overcoming inhibition. Development 135:4113–4122

    Article  CAS  PubMed  Google Scholar 

  • Harris ML, Buac K, Shakhova O, Hakami RM, Wegner M, Sommer L, Pavan WJ (2013) A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors. PLoS Genet 9:e1003644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henion PD, Weston JA (1997) Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124:4351–4359

    CAS  PubMed  Google Scholar 

  • Hornyak TJ, Hayes DJ, Chiu LY, Ziff EB (2001) Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech Dev 101:47–59

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Panthier JJ, Arnheiter H (2000) Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development 127:5379–5389

    CAS  PubMed  Google Scholar 

  • Hou L, Pavan WJ, Shin MK, Arnheiter H (2004) Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development. Development 131:3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Arnheiter H, Pavan WJ (2006) Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc Natl Acad Sci U S A 103:9081–9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatius MS, Moose HE, El-Hodiri HM, Henion PD (2008) colgate/hdac1 repression of foxd3 expression is required to permit mitfa-dependent melanogenesis. Dev Biol 313:568–583

    Article  CAS  PubMed  Google Scholar 

  • Jin EJ, Erickson CA, Takada S, Burrus LW (2001) Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Dev Biol 233:22–37

    Article  CAS  PubMed  Google Scholar 

  • Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J, Tan JL, Fogley RD, van Rooijen E, Hagedorn EJ, Ciarlo C, White RM, Matos DA, Puller AC, Santoriello C, Liao EC, Young RA, Zon LI (2016) A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351:aad2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Lo L, Dormand E, Anderson DJ (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31

    Article  CAS  PubMed  Google Scholar 

  • Kleber M, Sommer L (2004) Wnt signaling and the regulation of stem cell function. Curr Opin Cell Biol 16:681–687

    Article  CAS  PubMed  Google Scholar 

  • Kleber M, Lee HY, Wurdak H, Buchstaller J, Riccomagno MM, Ittner LM, Suter U, Epstein DJ, Sommer L (2005) Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J Cell Biol 169:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479

    CAS  PubMed  Google Scholar 

  • Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krispin S, Nitzan E, Kalcheim C (2010a) The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 70:796–812

    Article  PubMed  Google Scholar 

  • Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010b) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595

    Article  CAS  PubMed  Google Scholar 

  • Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M (1998) Cooperative function of POU proteins and SOX proteins in glial cells. J Biol Chem 273:16050–16057

    Article  CAS  PubMed  Google Scholar 

  • Lahav R, Dupin E, Lecoin L, Glavieux C, Champeval D, Ziller C, Le Douarin NM (1998) Endothelin 3 selectively promotes survival and proliferation of neural crest-derived glial and melanocytic precursors in vitro. Proc Natl Acad Sci U S A 95:14214–14219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavoie JF, Biernaskie JA, Chen Y, Bagli D, Alman B, Kaplan DR, Miller FD (2009) Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev 18:893–906

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM, Dupin E (2003) Multipotentiality of the neural crest. Curr Opin Genet Dev 13:529–536

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019

    Article  PubMed  Google Scholar 

  • Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023. https://doi.org/10.1126/science.1091611

    Article  CAS  PubMed  Google Scholar 

  • Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22:430–440

    Article  CAS  PubMed  Google Scholar 

  • Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414

    Article  CAS  PubMed  Google Scholar 

  • Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    CAS  PubMed  Google Scholar 

  • Lister JA, Cooper C, Nguyen K, Modrell M, Grant K, Raible DW (2006) Zebrafish Foxd3 is required for development of a subset of neural crest derivatives. Dev Biol 290:92–104

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie MA, Jordan SA, Budd PS, Jackson IJ (1997) Activation of the receptor tyrosine kinase Kit is required for the proliferation of melanoblasts in the mouse embryo. Dev Biol 192:99–107

    Article  CAS  PubMed  Google Scholar 

  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mort RL, Jackson IJ, Patton EE (2015) The melanocyte lineage in development and disease. Development 142:1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T (2009) Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells 27:888–897

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Toda S, Fujimoto M, Ohtsuki M, Byers HR, Etoh T, Nakagawa H (2001) Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential. Biochem Biophys Res Commun 288:8–15

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  CAS  PubMed  Google Scholar 

  • Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H (1997) Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Development 124:2377–2386

    CAS  PubMed  Google Scholar 

  • Opdecamp K, Kos L, Arnheiter H, Pavan WJ (1998) Endothelin signalling in the development of neural crest-derived melanocytes. Biochem Cell Biol 76:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961

    CAS  PubMed  Google Scholar 

  • Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–173

    Article  CAS  PubMed  Google Scholar 

  • Pla P, Alberti C, Solov’eva O, Pasdar M, Kunisada T, Larue L (2005) Ednrb2 orients cell migration towards the dorso-lateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell Res 18:181–187

    Article  CAS  PubMed  Google Scholar 

  • Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, Monsoro-Burq AH (2014) Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 386:461–472

    Article  CAS  PubMed  Google Scholar 

  • Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ (2000) Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107:1–6

    Article  CAS  PubMed  Google Scholar 

  • Prasad MS, Sauka-Spengler T, LaBonne C (2012) Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol 366:10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raible DW, Eisen JS (1994) Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120:495–503

    CAS  PubMed  Google Scholar 

  • Raible DW, Wood A, Hodsdon W, Henion PD, Weston JA, Eisen JS (1992) Segregation and early dispersal of neural crest cells in the embryonic zebrafish. Dev Dyn 195:29–42

    Article  CAS  PubMed  Google Scholar 

  • Richardson MK, Sieber-Blum M (1993) Pluripotent neural crest cells in the developing skin of the quail embryo. Dev Biol 157:348–358

    Article  CAS  PubMed  Google Scholar 

  • Rizvi TA, Huang Y, Sidani A, Atit R, Largaespada DA, Boissy RE, Ratner N (2002) A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci 22:9831–9840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldana-Caboverde A, Kos L (2010) Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res 23:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbedzija GN, Fraser SE, Bronner-Fraser M (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labeling. Development 108:605–612

    CAS  PubMed  Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE (1994) Developmental potential of trunk neural crest cells in the mouse. Development 120:1709–1718

    CAS  PubMed  Google Scholar 

  • Shah N, Groves A, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFß superfamily members. Cell 85:331–343

    Article  CAS  PubMed  Google Scholar 

  • Shakhova O, Sommer L (2010) Neural crest-derived stem cells. In: StemBook (ed) The stem cell research community. StemBook. https://doi.org/10.3824/stembook.3821.3851.3821

  • Shakhova O, Sommer L (2015) In vitro derivation of melanocytes from embryonic neural crest stem cells. Methods Mol Biol

    Google Scholar 

  • Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, Claudinot S, Okoniewski M, Beermann F, Mihic-Probst D, Moch H, Wegner M, Dummer R, Barrandon Y, Cinelli P, Sommer L (2012) Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14:882–890

    Article  CAS  PubMed  Google Scholar 

  • Shakhova O, Cheng P, Mishra PJ, Zingg D, Schaefer SM, Debbache J, Hausel J, Matter C, Guo T, Davis S, Meltzer P, Mihic-Probst D, Moch H, Wegner M, Merlino G, Levesque MP, Dummer R, Santoro R, Cinelli P, Sommer L (2015) Antagonistic cross-regulation between Sox9 and Sox10 controls an anti-tumorigenic program in melanoma. PLoS Genet 11:e1004877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman L, Stocker KM, Morrison R, Ciment G (1993) Basic fibroblast growth factor (bFGF) acts intracellularly to cause the transdifferentiation of avian neural crest-derived Schwann cell precursors into melanocytes. Development 118:1313–1326

    CAS  PubMed  Google Scholar 

  • Shin MK, Levorse JM, Ingram RS, Tilghman SM (1999) The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 402:496–501

    Article  CAS  PubMed  Google Scholar 

  • Sieber-Blum M, Cohen A (1980) Clonal analysis of quail neural crest cells: they are pluripotent and differentiate in vitro in the absence of non-neural crest cells. Dev Biol 80:96–106

    Article  CAS  PubMed  Google Scholar 

  • Simoes-Costa M, Bronner ME (2015) Establishing neural crest identity: a gene regulatory recipe. Development 142:242–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A (2006) A glossary for stem-cell biology. Nature 441:1060

    Article  CAS  Google Scholar 

  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  • Sommer L (2011) Generation of melanocytes from neural crest cells. Pigment Cell Melanoma Res 24:411–421

    Article  CAS  PubMed  Google Scholar 

  • Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    Article  CAS  PubMed  Google Scholar 

  • Stolt CC, Lommes P, Hillgartner S, Wegner M (2008) The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 36:5427–5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana M, Takeda K, Nobukuni Y, Urabe K, Long JE, Meyers KA, Aaronson SA, Miki T (1996) Ectopic expression of MITF, a gene for Waardenburg syndrome type 2, converts fibroblasts to cells with melanocyte characteristics. Nat Genet 14:50–54

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, Shibahara S (2000) Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 275:14013–14016

    Article  CAS  PubMed  Google Scholar 

  • Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9:593–603

    Article  CAS  PubMed  Google Scholar 

  • Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA (2008) Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 135:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, Erickson CA (2008) The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 21:598–610

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, Erickson CA (2009) FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136:1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, Giraddi RR, Wuidart A, Bouvencourt G, Dubois C, Salmon I, Sotiriou C, Phillips WA, Blanpain C (2015) Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525:119–123

    Article  PubMed  CAS  Google Scholar 

  • Wehrle-Haller B, Weston JA (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121:731–742

    CAS  PubMed  Google Scholar 

  • Weston JA (1991) Sequential segregation and fate of developmentally restricted intermediate cell populations in the neural crest lineage. Curr Top Dev Biol 25:133–153

    Article  CAS  PubMed  Google Scholar 

  • Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X, Fisher DE (2002) Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 158:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D, Beermann F, Barrandon Y, Sommer L (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, Chang HY (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuidervaart W, Pavey S, van Nieuwpoort FA, Packer L, Out C, Maat W, Jager MJ, Gruis NA, Hayward NK (2007) Expression of Wnt5a and its downstream effector beta-catenin in uveal melanoma. Melanoma Res 17:380–386

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Sommer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sommer, L. (2019). Developmental Biology of Melanocytes. In: Fisher, D., Bastian, B. (eds) Melanoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7147-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7147-9_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7148-6

  • Online ISBN: 978-1-4614-7147-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics