Skip to main content

Neurotoxic Vulnerability Underlying Schizophrenia Spectrum Disorders

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Neurotoxic vulnerability that putatively contributes to the etiopathogenesis of schizophrenia spectrum disorders encompasses perinatal adversity, genetic linkage, epigenetic disadvantage, and neurodegenerative propensities that affect both symptom domains, positive, negative, and cognitive, and biomarkers of the disorder. Molecular and cellular apoptosis/excitotoxicity that culminates in regional brain loss, reductions in reelin expression, trophic disruption, perinatal adversity, glycogen synthase kinase-3 dysregulation, and various instances of oxidative stress all influence the final end point disorder. The existence of prodromal psychotic phases, structural–functional aspects of regional neuroimaging, dopamine signal overexpression, and psychosis propensity provide substance for neurodegenerative influences. The pathophysiology of schizophrenia spectrum disorder encompasses the destruction of normal functioning of the neurotrophins, in particular brain-derived neurotrophic factor (BDNF), dyskinesia of necessary movements, and metabolic–metabolomic and proteomic markers. Neurotoxic accidents combined with genetic susceptibility appear to play a role in interfering with normal neurodevelopment or in tissue-destructive neurodegeneration or both, thereby elevating the eventual risk for disorder tendencies and eventual expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adell, A., Jiménez-Sánchez, L., López-Gil, X., & Romón, T. (2012). Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophrenia Bulletin, 38, 9–14.

    PubMed Central  PubMed  Google Scholar 

  • Akil, M., & Lewis, D. A. (1997). Cytoarchitecture of the entorhinal cortex in schizophrenia. The American Journal of Psychiatry, 154, 1010–1012.

    CAS  PubMed  Google Scholar 

  • Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., & Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4, 147.

    PubMed Central  PubMed  Google Scholar 

  • Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., Acheson, A. L., Lindsay, R. M., & Wiegand, S. J. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860.

    CAS  PubMed  Google Scholar 

  • Aoyama, N., Théberge, J., Drost, D. J., Manchanda, R., Northcott, S., Neufeld, R. W., Menon, R. S., Rajakumar, N., Pavlosky, W. F., Densmore, M., Schaefer, B., & Williamson, P. C. (2011). Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia. The British Journal of Psychiatry, 198, 448–456.

    PubMed  Google Scholar 

  • Archer, T. (2010). Neurodegeneration in schizophrenia. Expert Review of Neurotherapeutics, 10, 1131–1141.

    PubMed  Google Scholar 

  • Archer, T., Kostrzewa, R. M., Beninger, R. J., & Palomo, T. (2010a). Staging perspectives in neurodevelopmental aspects of neuropsychiatry: Agents, phases and ages at expression. Neurotoxicity Research, 18, 287–305.

    CAS  PubMed  Google Scholar 

  • Archer, T., Kostrzewa, R. M., Palomo, T., & Beninger, R. J. (2010b). Clinical staging in the pathophysiology of psychotic and affective disorders: Facilitation of prognosis and treatment. Neurotoxicity Research, 18, 211–228.

    PubMed  Google Scholar 

  • Arias, I., Sorlozano, A., Villegas, E., de Dios, L. J., McKenney, K., Cervilla, J., Gutierrez, B., & Gutierrez, J. (2012). Infectious agents associated with schizophrenia: A meta-analysis. Schizophrenia Research, 136(1–3), 128–136.

    PubMed  Google Scholar 

  • Arnold, S. E., Hyman, B. T., Van Hoesen, G. W., & Damasio, A. R. (1991). Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Archives of General Psychiatry, 48, 625–632.

    CAS  PubMed  Google Scholar 

  • Arnold, S. E., Ruscheinsky, D. D., & Han, L. Y. (1997). Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analysis. Biological Psychiatry, 42, 639–647.

    CAS  PubMed  Google Scholar 

  • Avila, J., Lucas, J. J., Perez, M., & Hernandez, F. (2004). Role of tau protein in both physiological and pathological conditions. Physiological Reviews, 84, 361–384.

    CAS  PubMed  Google Scholar 

  • Baiano, M., Perlini, C., Rambaldelli, G., Cerini, R., Dusi, N., Bellani, M., Spezzapria, G., Versace, A., Balestrieri, M., Mucelli, R. P., Tansella, M., & Brambilla, P. (2008). Decreased entorhinal cortex volumes in schizophrenia. Schizophrenia Research, 102, 171–180.

    PubMed  Google Scholar 

  • Balduini, W., Lombardelli, G., Peruzzi, G., & Cattabeni, F. (1991). Treatment with methylazoxymethanol at different gestational days: Physical, reflex development and spontaneous activity in the offspring. Neurotoxicology, 12, 179–188.

    CAS  PubMed  Google Scholar 

  • Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390, 191–214.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartzokis, G. (2011). Neuroglialpharmacology: White matter pathophysiologies and psychiatric treatments. Frontiers in Bioscience, 17, 2695–2733.

    Google Scholar 

  • Bayer, S. A., & Altman, J. (2004). Development of the telencephalon: Neural stem cells, neurogenesis, and neuronal migration. In G. Paxinos (Ed.), The rat neural system (pp. 27–73). San Diego: Elsevier.

    Google Scholar 

  • Benros, M. E., Nielsen, P. R., Nordentoft, M., Eaton, W. W., Dalton, S. O., & Mortensen, P. B. (2011). Autoimmune diseases and severe infections as risk factors for schizophrenia: A 30-year population-based register study. The American Journal of Psychiatry, 168, 1303–1310.

    PubMed  Google Scholar 

  • Berger, Z., Ttofi, E. K., Michel, C. H., Pasco, M. Y., Tenant, S., Rubinsztein, D. C., & O’Kane, C. J. (2005). Lithium rescues toxicity of aggregate-prone proteins in Drosophila by perturbing Wnt pathway. Human Molecular Genetics, 14, 3003–3011.

    CAS  PubMed  Google Scholar 

  • Bergman, O., Westberg, L., Lichtenstein, P., Eriksson, E., & Larsson, H. (2011). Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. The International Journal of Neuropsychopharmacology, 14, 1367–1376.

    CAS  PubMed  Google Scholar 

  • Bleich, S., Frieling, H., & Hillemacher, T. (2007). Elevated prenatal homocysteine levels and the risk of schizophrenia. Archives of General Psychiatry, 64, 980–981.

    PubMed  Google Scholar 

  • Bleich, S., Junemann, A., Von Ahsen, N., Lausen, B., Ritter, K., Beck, G., Naumann, G. O., & Kamhuber, J. (2002). Homocysteine and risk of open-angle glaucoma. Journal of Neural Transmission, 109, 1499–1504.

    CAS  PubMed  Google Scholar 

  • Bosia, M., Buonocure, M., Guglielmino, C., Pirovana, A., Lorenzi, C., Marcone, A., Bramanti, P., Cappa, S. F., Aquglia, E., Smerladi, E., & Cavallaro, R. (2011). Saitohin polymorphism and executive dysfunction in schizophrenia. Neurological Sciences, 33(5), 1051–1056. doi:10.1007/s10072-0893-9.

    Google Scholar 

  • Brambrink, A. M., Evers, A. S., Avidan, M. S., Farber, N. B., Smith, D. J., Martin, L. D., Dissen, G. A., Creeley, C. E., & Olney, J. W. (2012). Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology, 116(2), 372–384.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, A. M., & Ransom, B. R. (2007). Astrocyte glycogen and brain energy metabolism. Glia, 55, 1263–1271.

    PubMed  Google Scholar 

  • Brown, A. M., Baltan Tekkok, S., & Ransom, B. R. (2003). Glycogen regulation and functional role in mouse white matter. The Journal of Physiology, 549, 501–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, A. M., Baltan Tekkok, S., & Ransom, B. R. (2004). Energy transfer from astrocytes to axons: The role of CNS glycogen. Neurochemistry International, 45, 529–536.

    CAS  PubMed  Google Scholar 

  • Brown, A. S. (2011). Exposure to prenatal infection and risk of schizophrenia. Frontiers in Psychiatry, 2, 63.

    PubMed Central  PubMed  Google Scholar 

  • Brown, A. S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Developmental Neurobiology, 72(10), 1272–1276. doi:10.1002/dneu.22024.

    Google Scholar 

  • Brown, A. S., & Derkits, E. J. (2010). Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. The American Journal of Psychiatry, 167, 261–280.

    PubMed Central  PubMed  Google Scholar 

  • Brown, A. S., & Patterson, P. H. (2011). Maternal infection and schizophrenia: Implications for prevention. Schizophrenia Bulletin, 37, 284–290.

    PubMed Central  PubMed  Google Scholar 

  • Brown, A. S., Bottiglieri, T., Schaefer, C. A., Quesenberry, C. P. J. R., Liu, L., Bresnahan, M., & Susser, E. S. (2007). Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Archives of General Psychiatry, 64, 980–981.

    Google Scholar 

  • Brown, A. S., & Susser, E. S. (2005). Homocysteine and schizophrenia: From prenatal to adult life. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 1175–1180.

    CAS  Google Scholar 

  • Brown, A. S., & Susser, E. S. (2008). Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophrenia Bulletin, 34, 1054–1063.

    PubMed Central  PubMed  Google Scholar 

  • Brown, A. S., Vinogradov, S., Kremen, W. S., Poole, J. H., Deicken, R. F., Penner, J. D., McKeague, I. W., Kochetkova, A., Kern, D., & Schaefer, C. A. (2009). Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. The American Journal of Psychiatry, 166, 683–690.

    PubMed Central  PubMed  Google Scholar 

  • Brown, A. S., Vinogradov, S., Kremen, W. S., Poole, J. H., Bao, Y., Kern, D., & McKeague, I. W. (2011). Association of maternal genital and reproductive infections with verbal memory and motor deficits in adult schizophrenia. Psychiatry Research, 188, 179–186.

    PubMed Central  PubMed  Google Scholar 

  • Buckley, P. F., Pillai, A., Evans, D., Stirewalt, E., & Mahadik, S. (2007). Brain-derived neurotrophic factor in first-episode psychosis. Schizophrenia Research, 91, 1–5.

    PubMed Central  PubMed  Google Scholar 

  • Buckley, P. F., Pillai, A., & Howell, K. R. (2011). Brain-derived neurotrophic factor: Findings in schizophrenia. Current Opinion in Psychiatry, 24(2), 122–127.

    PubMed  Google Scholar 

  • Burd, I., Balakrishnan, B., & Kannan, S. (2012). Models of fetal brain injury, intrauterine inflammation, and preterm birth. American Journal of Reproductive Immunology, 67, 287–294. doi:10.1111/j.1600-0897.2012.01110.x.

    CAS  PubMed  Google Scholar 

  • Bustillo, J. R., Rowland, L. M., Mullins, P., Jung, R., Chen, H., Qualls, C., Hammond, R., Brooks, W. M., & Lauriello, J. (2010). 1H-MRS at 4 tesla in minimally treated early schizophrenia. Molecular Psychiatry, 15, 629–636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon, M., Caspi, A., & Moffitt, T. E. (2002a). Evidence for early, specific, pandevelopment impairment in schizophreniform disorder: Results from a longitudinal birth cohort. Archives of General Psychiatry, 59, 449–456.

    PubMed  Google Scholar 

  • Cannon, M., Murray, R. M., & Jones, P. (2002b). Obstetric complications and schizophrenia: Past, present and future. The American Journal of Psychiatry, 159, 1080–1092.

    PubMed  Google Scholar 

  • Carluccio, M. A., Ancora, M. A., Massaro, M., Carluccio, M., Scoditti, E., Distante, A., Storelli, C., & De Caterina, R. (2007). Homocysteine induces VCAM-1 gene expression through NF-kappaB and NAD(P)H oxidase activation: Protective role of Mediterranean diet polyphenolic antioxidants. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2344–H2354.

    CAS  PubMed  Google Scholar 

  • Cattabeni, F., & Di Luca, M. (1997). Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiological Reviews, 77, 199–215.

    CAS  PubMed  Google Scholar 

  • Ceranik, K., Deng, J., Heimrich, B., Lübke, J., Zhao, S., Förster, E., & Frotscher, M. (1999). Hippocampal Cajal-Retzius cells project to the entorhinal cortex: Retrograde tracing and intracellular tracing studies. The European Journal of Neuroscience, 11, 4278–4290.

    CAS  PubMed  Google Scholar 

  • Chan, M. H., Chiu, P. H., Lin, C. Y., & Chen, H. H. (2012). Inhibition of glycogen synthase kinase-3 attenuates psychotomimetic effects of ketamine. Schizophrenia Research, 136, 96–103.

    PubMed  Google Scholar 

  • Chen, C. C., & Huang, T. L. (2011). Effects of antipsychotics on the serum BDNF levels in schizophrenia. Psychiatry Research, 189, 327–330.

    CAS  PubMed  Google Scholar 

  • Chen, S., & Hillman, D. E. (1986). Selective ablation of neurons by methylazoxymethanol during pre- and postnatal brain development. Experimental Neurology, 94, 103–119.

    CAS  PubMed  Google Scholar 

  • Ciani, E., Frenquelli, M., & Contestabile, A. (2003). Developmental expression of the cell cycle and apoptosis controlling gene, Lotl, in the rat cerebellum and in cerebellar granule cells. Brain Research. Developmental Brain Research, 142, 193–202.

    CAS  PubMed  Google Scholar 

  • Combarros, O., Rodero, L., Infante, J., Palacio, E., Llorca, J., Fernández-Viadero, C., Peña, N., & Berciano, J. (2003). Age-dependent association between the Q7R polymorphism in the Saitohin gene and sporadic Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 16, 132–135.

    CAS  PubMed  Google Scholar 

  • Correll, C. U., & Schenk, E. M. (2008). Tardive dyskinesias and new antipsychotics. Current Opinion in Psychiatry, 21, 151–156.

    PubMed  Google Scholar 

  • Dauvermann, M. R., Mukherjee, P., Moorhead, W. T., Stanfield, A. C., Fusar-Poli, P., Lawrie, S. M., & Whalley, H. C. (2012). Relationship between gyrification and functional connectivity of the prefrontal cortex in subjects at high genetic risk of schizophrenia. Current Pharmaceutical Design, 18(4), 434–442. PMID: 22239574.

    CAS  PubMed  Google Scholar 

  • Dean, O. M., van den Buuse, M., Berk, M., Copolov, D. L., Mavros, C., & Bush, A. I. (2011). N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: Relevance to schizophrenia and bipolar disorder. Neuroscience Letters, 499, 149–153.

    CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska, A., & Kontek, B. (2010). Lipid peroxidation in patients with schizophrenia. Psychiatry and Clinical Neuroscience, 64, 469–475.

    Google Scholar 

  • Dietrich-Muszalska, A., & Olas, B. (2007). Isoprostanes as indicators of oxidative stress in schizophrenia. The World Journal of Biological Psychiatry, 14, 1–6.

    Google Scholar 

  • Dietrich-Muszalska, A., Olas, B., & Rabe-Jablonska, J. (2005). Oxidative stress in blood platelets from schizophrenic patients. Platelets, 16, 386–391.

    CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska, A., Olas, B., Glowacki, R., & Bald, E. (2009). Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology, 59, 1–7.

    CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska, A., Malinowska, J., Olas, B., Glowacki, R., Bald, E., Wachowicz, B., & Rabe-Jablonska, J. (2012). The oxidative stress may be induced by the elevated homocysteine in schizophrenia patients. Neurochemical Research, 37, 1057–1062.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Do, K. Q., Cabungal, J. H., Frank, A., Steullet, P., & Cuenod, M. (2009). Redox dysregulation, neurodevelopment and schizophrenia. Current Opinion in Neurobiology, 19, 220–230.

    CAS  PubMed  Google Scholar 

  • Dringen, R., & Hirrlinger, J. (2003). Glutathione pathways in the brain. Biological Chemistry, 384, 505–516.

    CAS  PubMed  Google Scholar 

  • Dringen, K. O., Löschmann, P. A., & Hamprecht, B. (1997). Use of dipeptides for the synthesis of glutathione by astroglia-rich primary cultures. Journal of Neurochemistry, 69, 868–874.

    CAS  PubMed  Google Scholar 

  • Ducharme, G., Lowe, G. C., Goutagny, R., & Williams, S. (2012). Early alterations in hippocampal circuitry and theta rhythm generation in a mouse model of prenatal infection: Implications for schizophrenia. PloS One, 7(1), e29754.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eastwood, S. L., & Harrison, P. J. (2006). Cellular basis of reduced cortical reelin expression in schizophrenia. The American Journal of Psychiatry, 163, 540–542.

    PubMed  Google Scholar 

  • Egerton, A., & Stone, J. M. (2012). The glutamate hypothesis of schizophrenia: Neuroimaging and drug development. Current Pharmaceutical Biotechnology, 13(8), 1500–1512.

    CAS  PubMed  Google Scholar 

  • Elia, J., Laracy, S., Allen, J., Nissley-Tsiopinis, J., & Borgmann-Winter, K. (2011). Epigenetics: Genetics versus life experiences. Current Topics in Behavioral Neuroscience, 9, 317–340.

    Google Scholar 

  • Ellenbroek, B. A., van den Kroonenberg, P. T., & Cools, A. R. (1998). The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophrenia Research, 30, 251–260.

    CAS  PubMed  Google Scholar 

  • Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3 signaling in schizophrenia. Nature Genetics, 36, 131–137.

    CAS  PubMed  Google Scholar 

  • Falkai, P., Kovalenko, S., Schneider-Axmann, T., Ovary, I., & Honer, W. G. (2003). Second replication of disturbed pre-alpha-cell migration in the entorhinal cortex of schizophrenic patients. Schizophrenia Research, 60, 71–74.

    Google Scholar 

  • Fatemi, S. H., Earle, J. A., & McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Molecular Psychiatry, 5, 654–663.

    CAS  PubMed  Google Scholar 

  • Favalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., & Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. Journal of Psychiatric Research, 46, 1–11.

    PubMed  Google Scholar 

  • Featherstone, R. E., Rizos, Z., Nobrega, J. N., Kapur, S., & Fletcher, P. J. (2007). Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: Parallels to schizophrenia. Neuropsychopharmacology, 32, 483–492.

    CAS  PubMed  Google Scholar 

  • Ferguson, S. A., Paule, M. G., & Holson, R. R. (1996). Functional effects of methylazoxymethanol-induced cerebellar hypoplasia in rats. Neurotoxicology and Teratology, 18, 529–537.

    Google Scholar 

  • Ferguson, S. A., & Holson, R. R. (1997). Methylazoxymethanol-induced micrencephaly in the brown Norway strain: Behavior and brain weight. International Journal of Developmental Neuroscience, 15, 75–86.

    CAS  PubMed  Google Scholar 

  • Ferrer, I., Pozas, E., Marti, M., Blanco, R., & Planas, A. M. (1997). Methylazoxymethanol-induced apoptosis in the external granule cell layer of the developing cerebellum of the rat is associated with strong c-jun expression and formation of high molecular weight c-jun complexes. Journal of Neuropathology and Experimental Neurology, 56, 1–9.

    CAS  PubMed  Google Scholar 

  • Fiore, M., Korf, J., Antonelli, A., Talamini, L., & Aloe, L. (2002). Long-lasting effects of prenatal MAM treatment on water maze performance in rats: Associations with altered brain development and neurotrophin levels. Neurotoxicology and Teratology, 24, 179–191.

    CAS  PubMed  Google Scholar 

  • Fitzgerald, P. J. (2012). The NMDA receptor may participate in widespread suppression of circuit level neural activity, in addition to a similarly prominent role in circuit level activation. Behavioural Brain Research, 230, 291–298.

    CAS  PubMed  Google Scholar 

  • Flagstad, P., Glenthoj, B. Y., & Didriksen, M. (2005). Cognitive deficits caused by late gestational disruption of neurogenesis in rats: A preclinical model of schizophrenia. Neuropsychopharmacology, 30, 250–260.

    PubMed  Google Scholar 

  • Fontes, M. A., Bolla, K. I., Cunha, P. J., Almeida, P. P., Jungerman, F., Laranjeira, R. R., Bressan, R. A., & Lacerda, A. L. (2011). Cannabis use before age 15 and subsequent executive functioning. The British Journal of Psychiatry, 198, 442–447.

    PubMed  Google Scholar 

  • Furukawa, T., Mizukawa, R., Hirai, T., Fujihara, S., Kitamura, T., & Takahashi, K. (1998). Childhood parental loss and schizophrenia: Evidence against pathogens but for some pathoplastic effects. Psychiatry Research, 81, 353–362.

    CAS  PubMed  Google Scholar 

  • Gao, L., Tse, S. W., Conrad, C., & Andreadis, A. (2005). Saitohin, which is nested in the tau locus and confers allele-specific susceptibility to several neurodegenerative diseases, interacts with peroxiredoxin 6. The Journal of Biological Chemistry, 280, 39268–39272.

    CAS  PubMed  Google Scholar 

  • Geddes, J. R., Verdoux, H., & Takei, N. (1999). Schizophrenia and complications of pregnancy and labour: An individual patient data meta-analysis. Schizophrenia Bulletin, 25, 413–423.

    CAS  PubMed  Google Scholar 

  • Gibbs, M. E., Anderson, D. G., & Hertz, L. (2006). Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia, 54, 214–222.

    PubMed  Google Scholar 

  • Gill, K. M., Lodge, D. J., Cook, J. M., Aras, S., & Grace, A. A. (2011). A novel α5GABAAR-postive allosteric modulator reverses hyperactivation of the dopamine system in the MAM model of schizophrenia. Neuropsychopharmacology, 36, 1903–1911.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman, A. L., Pezawas, L., Mattay, V. S., Fischl, B., Verchinski, B. A., Chen, Q., Weinberger, D. R., & Meyer-Lindenberg, A. (2009). Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Archives of General Psychiatry, 66, 467–477.

    PubMed Central  PubMed  Google Scholar 

  • Gomez-Sintes, R., Hernandez, F., Lucas, J. J., & Avila, J. (2011). GSK-3 mouse models to study neuronal apoptosis and neurodegeneration. Frontiers in Molecular Neuroscience, 4, 1–11. doi:103389/fnmol.2011.00045.

    Google Scholar 

  • Goto, Y., & Grace, A. A. (2006). Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development. Biological Psychiatry, 60, 1259–1267.

    PubMed  Google Scholar 

  • Goto, N., Yoshimura, R., Kakeda, S., Moriya, J., Hayashi, K., Ikenouchi-Sugita, A., Umene-Nakano, W., Hori, H., Ueda, N., Korogi, Y., & Nakamura, J. (2010). Comparison of brain N-acetylaspartate levels and serum brain-derived neurotrophic factor (BDNF) levels between patients with first-episode schizophrenia psychosis and healthy controls. European Psychiatry, 26, 57–63.

    Google Scholar 

  • Gourevitch, R., Rocher, C., Le Pen, G., Krebs, M. O., & Jay, T. M. (2004). Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behavioural Pharmacology, 15, 287–292.

    CAS  PubMed  Google Scholar 

  • Graff, J., Dohoon, K., Dobbin, M. M., & Tsai, L. H. (2011). Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiological Reviews, 91, 603–649.

    CAS  PubMed  Google Scholar 

  • Gratacos, M., Gonzalez, J. R., Mercader, J. M., de Cid, R., Urretavizcaya, M., & Estivill, X. (2007). Brain-derived neurotrophic factor Val66Met and psychiatric disorders: Meta-analysis of case–control studies confirm association to substance-related disorders, eating disorders and schizophrenia. Biological Psychiatry, 61, 911–922.

    CAS  PubMed  Google Scholar 

  • Grillo, R. W., Ottoni, G. L., Leke, R., Souza, D. O., Portela, L. V., & Lara, D. R. (2007). Reduced serum BDNF levels in schizophrenic patients on clozapine or typical antipsychotics. Journal of Psychiatric Research, 41, 31–35.

    PubMed  Google Scholar 

  • Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., & Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Archives of General Psychiatry, 57, 1061–1069.

    CAS  PubMed  Google Scholar 

  • Harrison, P. J. (2004). The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology, 174, 151–162.

    CAS  PubMed  Google Scholar 

  • Hertz, L., O’Dowd, B. S., Ng, K. T., & Gibbs, M. E. (2003). Reciprocal changes in forebrain contents of glycogen and glutamate/glutamate during early memory consolidation in the day-old chick. Brain Research, 994, 226–233.

    CAS  PubMed  Google Scholar 

  • Hoenicka, J., Garrido, E., Martínez, I., Ponce, G., Aragüés, M., Rodríguez-Jiménez, R., España-Serrano, L., Alvira-Botero, X., Santos, J. L., Rubio, G., Jiménez-Arriero, M. A., Palomo, T., & PARGPARG. (2010). Gender-specific COMT Val158Met polymorphism association in Spanish schizophrenic patients. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B, 79–85.

    CAS  Google Scholar 

  • Honea, R. A., Meyer-Lindenberg, A., Hobbs, K. B., Pezawas, L., Mattay, V. S., Egan, M. F., Verchinski, B., Passingham, R. E., Weinberger, D. R., & Callicott, J. H. (2008). Is grey matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometric study of patients with schizophrenia and their healthy siblings. Biological Psychiatry, 63, 465–474.

    PubMed Central  PubMed  Google Scholar 

  • Hradetzky, S., Sanderson, T. M., Tsang, T. M., Sherwood, J. L., Fitzjohn, S. M., Lakics, V., Malik, N., Schoeffmann, S., O’Neill, M. J., Cheng, T. M., Harris, L. W., Rahmoune, H., Guest, P. C., Sher, E., Collingridge, G. L., Holmes, E., Tricklebank, M. D., & Bahn, S. (2011). The methylazoxymethanol acetate (MAM-E17) rat model: Molecular and functional effects in the hippocampus. Neuropsychopharmacology, 37, 364–377.

    PubMed Central  PubMed  Google Scholar 

  • Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., & Lindsay, R. M. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.

    CAS  PubMed  Google Scholar 

  • Ikeda, Y., Yahata, N., Ito, I., Nagano, M., Toyota, T., Yoshikawa, T., Okubo, Y., & Suzuki, H. (2008). Low serum levels of brain derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophrenia Research, 101, 58–66.

    PubMed  Google Scholar 

  • Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., & Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 95, 15718–15723.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176.

    PubMed  Google Scholar 

  • Jacob, C. P., Nguyen, T. T., Dempfle, A., Heine, M., Windemuth-Kieselbach, C., Baumann, K., Jacob, F., Prechtl, J., Wittlich, M., Herrmann, M. J., Gross-Lesch, S., Lesch, K. P., & Reif, A. (2010). A gene-environment investigation on personality traits in two independent clinical sets of adult patients with personality disorder and attention deficit/hyperactivity disorder. European Archives Psychiatry and Clinical Neuroscience, 260, 317–326.

    Google Scholar 

  • Jafari, S., Fernandez-Enright, F., & Huang, X. F. (2012). Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. Journal of Neurochemistry, 120, 371–384.

    CAS  PubMed  Google Scholar 

  • Janković, N., Kecmanović, M., Dimitrijević, R., Keckarević Marković, M., Dobricić, V., Keckarević, D., Savić Pavicević, D., & Romac, S. (2008). HD phenocopies – Possible role of Saitohin gene. The Journal of Neuroscience, 118, 391–397.

    Google Scholar 

  • Jaworski, T., Dewachter, I., Lechat, B., Gees, M., Kremer, A., Demedts, D., Borghgraef, P., Devijver, H., Kügler, S., Patel, S., Woodgett, J. R., & Van Leuven, F. (2011). GSK-3α/β kinases and amyloid production in vivo. Nature, 480(7376), E4–E5.

    CAS  PubMed  Google Scholar 

  • Jonsson, S. A., Luts, A., Guldberg-Kjaer, N., & Öhman, R. (1999). Pyramidal neuron size in the hippocampus of schizophrenics correlates with total cell count and degree of cell disarray. European Archives of Psychiatry and Clinical Neuroscience, 249, 169–173.

    CAS  PubMed  Google Scholar 

  • Kaidanovich-Beilin, O., & Woodgett, J. R. (2011). GSK-3: Functional insights from cell biology and animal models. Frontiers in Molecular Neuroscience, 4, 40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karilampi, U., Helldin, L., Hjärthag, F., Norlander, T., & Archer, T. (2007). Verbal learning in schizopsychotic outpatients and healthy volunteers as a function of cognitive performance levels. Archives of Clinical Neuropsychology, 22, 161–174.

    PubMed  Google Scholar 

  • Karilampi, U., Helldin, L., & Archer, T. (2011). Cognition and global assessment of functioning in male and female outpatients with schizophrenia spectrum. The Journal of Nervous and Mental Disease, 199, 445–448.

    PubMed  Google Scholar 

  • Kneeland, R. E., & Fatemi, S. H. (2012). Viral infection inflammation and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 42, 35–48. PMID: 22349576.

    Google Scholar 

  • Konradi, C., Yang, C. K., Zimmerman, E. I., Lohmann, K. M., Gresch, P., Pantazopoulos, H., Berretta, S., & Heckers, S. (2011). Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Research, 131, 165–173.

    PubMed Central  PubMed  Google Scholar 

  • Lafarga, M., Lerga, A., Andres, M. A., Polanco, J. L., Calle, E., & Berciano, M. T. (1997). Apoptosis induced by methylazoxymethanol in developing rat cerebellum: Organization of the cell nucleus and its relationship to DNA and tRNA degradation. Cell and Tissue Research, 289, 25–38.

    CAS  PubMed  Google Scholar 

  • Lahti, A. C., Weiler, M. A., Holcomb, H. H., Tamminga, C. A., Carpenter, W. T., & McMahon, R. (2006). Correlations between rCBF and symptoms in two independent cohorts of drug-free patients with schizophrenia. Neuropsychopharmacology, 31, 221–230.

    PubMed  Google Scholar 

  • Large, C. H., Bison, S., Sartori, I., Read, K. D., Gozzi, A., Quarta, D., Antolini, M., Hollands, E., Gill, C. H., Gunthorpe, M. J., Idris, N., Neill, J. C., & Alvaro, G. S. (2011). The efficacy of sodium channel blockers to prevent phencyclidine-induced cognitive dysfunction in the rat: Potential for novel treatments for schizophrenia. The Journal of Pharmacology and Experimental Therapeutics, 338, 100–113.

    CAS  PubMed  Google Scholar 

  • Lavoie, S., Allaman, I., Petit, J. M., Do, K. Q., & Magistretti, P. J. (2011). Altered glycogen metabolism in cultured astrocytes from mice with chronic glutathione deficit: Relevance for neuroenergetics in schizophrenia. PloS One, 6, e22875.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Pen, G., Jay, T. M., & Krebs, M. O. (2011). Effect of antipsychotics on spontaneous hyperactivity and hypersensitivity to MK-801-induced hyperactivity in rats prenatally exposed to methylazoxymethanol. Journal of Psychopharmacology, 25, 822–835.

    PubMed  Google Scholar 

  • Lee, M. H., & Rabe, A. (1992). Premature decline in Morris water maze performance of aging microencephalic rats. Neurotoxicology and Teratology, 14, 383–392.

    CAS  PubMed  Google Scholar 

  • Lee, A. H., Lange, C., Ricken, R., Hellweg, R., & Lang, U. E. (2011). Reduced brain-derived neurotrophic factor serum concentrations in acute schizophrenic patients increase during antipsychotic treatment. Journal of Clinical Psychopharmacology, 31, 334–336.

    CAS  PubMed  Google Scholar 

  • Leng, A., Jongen-Rêlo, A. L., Pothuizen, H. H., & Feldon, J. (2005). Effects of prenatal methylazoxymethanol acetate (MAM) treatment in rats on water maze performance. Behavioural Brain Research, 161, 291–298.

    CAS  PubMed  Google Scholar 

  • Li, H. C., Chen, Q. Z., Ma, Y., & Zhou, J. F. (2006). Imbalanced free radicals and antioxidant defense systems in schizophrenia: A comparative study. Journal of Zhejiang University Science B, 12, 981–986.

    Google Scholar 

  • Lillrank, S. M., Lipska, B. K., Kolachana, B. S., & Weinberger, D. R. (1999). Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. Journal of Neural Transmission, 106, 183–196.

    CAS  PubMed  Google Scholar 

  • Lipska, B. K., & Weinberger, D. R. (1994). Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage. Neuropsychopharmacology, 10, 199–205.

    CAS  PubMed  Google Scholar 

  • Lipska, B. K., Jaskiw, G. E., Chrapusta, S., Karoum, F., & Weinberger, D. R. (1992). Ibotenic acid lesions of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Research, 585, 1–6.

    CAS  PubMed  Google Scholar 

  • Lipska, B. K., Swerdlow, N. R., Geyer, M. A., Jaskiw, G. E., Braff, D. L., & Weinberger, D. R. (1995). Neonatal excitotoxic lesions hippocampal damage in rats causes post pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology, 122, 35–43.

    CAS  PubMed  Google Scholar 

  • Lipska, B. K., Kolb, B., Halim, N., & Weinberger, D. R. (2001). Synaptic abnormalities in prefrontal cortex and nucleus accumbens of adult rats with neonatal hippocampal damage. Schizophrenia Research, 49, 47–51.

    Google Scholar 

  • Lodge, D. J., & Grace, A. A. (2008). Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotoxicity Research, 14, 97–104.

    PubMed Central  PubMed  Google Scholar 

  • Lodge, D. J., Behrens, M. M., & Grace, A. A. (2009). A loss of parvalbumin-containing interneurons is associated with loss of oscillatory activity in an animal model of schizophrenia. The Journal of Neuroscience, 29, 2344–2354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lodge, D. J., & Grace, A. A. (2012). Gestational methylazoxymethanol acetate administration alters proteomic and metabolomics markers of hippocampal glutamatergic transmission. Neuropsychopharmacology, 37, 319–320.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenzi, C., Marcone, A., Pirovano, A., Marino, E., Cordici, F., Cerami, C., Delmonte, D., Cappa, S. F., Bramanti, P., & Smeraldi, E. (2010). Serotonin transporter and saitohin genes in risk of Alzheimer’s disease and frontotemporal lobar dementia: Preliminary findings. Neurological Science, 31, 741–749.

    Google Scholar 

  • Macêdo, D. S., Araújo, D. P., Sampaio, L. R., Vasconcelos, S. M., Sales, P. M., Sousa, F. C., Hallak, J. E., Crippa, J. A., & Carvalho, A. F. (2012). Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: A systematic review. Brazilian Journal of Medical and Biological Research, 45, 179–186.

    PubMed Central  PubMed  Google Scholar 

  • Maloku, E., Covelo, I. R., Hanbauer, I., Guidotti, A., Kadriu, B., Hu, Q., Davis, J. M., & Costa, E. (2010). Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proceedings of the National Academy of Sciences of the United States of America, 107, 4407–4411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marona-Lewicka, D., Nichols, C. D., & Nichols, D. E. (2011). An animal model of schizophrenia based on chronic LSD administration: Old idea, new results. Neuropharmacology, 61, 503–512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matricon, J., Bellon, A., Frieling, H., Kebir, O., Le Pen, G., Beuvon, F., Daumas-Dupont, C., Jay, T. M., & Krebs, M.-O. (2010). Neuropathological and reelin deficiencies in the hippocampal formation of rats exposed to MAM: Differences and similarities with schizophrenia. PloS One, 5, e1029.

    Google Scholar 

  • Meyer, U. (2011). Developmental neuroinflammation and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 42, 20–34. PMID: 22122877.

    Google Scholar 

  • Meyer-Lindenberg, A. (2011). Neuroimaging and the question of neurodegeneration in schizophrenia. Progress in Neurobiology, 95, 514–516.

    PubMed  Google Scholar 

  • Meyer-Lindenberg, A., Olsen, R. K., Kohn, P. D., Brown, T., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry, 62, 379–386.

    PubMed  Google Scholar 

  • Miller, J., Williamson, P., Jensen, J. E., Manchanda, R., Menon, R., Neufeld, R., Rajakumar, N., Pavlosky, W., Densmore, M., Schaefer, B., & Drost, D. J. (2009). Longitudinal 4.0 Testa (31)P magnetic resonance spectroscopy changes in the anterior cingulate and left thalamus in first episode schizophrenia. Psychiatry Research Neuroimaging, 173, 155–157.

    Google Scholar 

  • Miller, R., & Chouinard, G. (1993). Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-induced supersensitivity psychosis and refractory schizophrenia. Biological Psychiatry, 34, 713–738.

    CAS  PubMed  Google Scholar 

  • Miyata, T., Ono, Y., Okamoto, M., Masaoka, M., Sakakibara, A., Kawaguchi, A., Hashimoto, M., & Ogawa, M. (2010). Migration, early axonogenesis, and reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Development, 5, 23.

    PubMed Central  PubMed  Google Scholar 

  • Mohammed, A. K., Jonsson, G., Söderberg, U., & Archer, T. (1986a). Impaired selective attention in methylazoxymethanol-induced microencephalic rats. Pharmacology Biochemistry and Behavior, 24, 975–981.

    CAS  Google Scholar 

  • Mohammed, A. K., Jonsson, G., Sundström, E., Minor, B. G., Söderberg, U., & Archer, T. (1986b). Selective attention and place navigation in rats treated prenatally with methylazoxymethanol. Brain Research. Developmental Brain Research, 30, 145–155.

    CAS  Google Scholar 

  • Moore, H., Jentsch, J. D., Ghajarnia, M., Geyer, M. A., & Grace, A. A. (2006). A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: Implications for the neuropathology of schizophrenia. Biological Psychiatry, 60, 253–264.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan, C., Kirkbride, J., Leff, J., Craig, T., Hutchinson, G., McKenzie, K., Morgan, K., Dazzan, P., Doody, G. A., Jones, P., Murray, R., & Fearon, P. (2007). Parental separation, loss and psychosis in different ethnic groups: A case-control study. Psychological Medicine, 37, 495–503.

    PubMed  Google Scholar 

  • Nielsen, P. R., Laursen, T. M., & Mortensen, P. B. (2011). Association between parental hospital-treated infection and the risk of schizophrenia in adolescence and early adulthood. Schizophrenia Bulletin, 39(1), 230–237. PMID: 22021661.

    Google Scholar 

  • Niitsu, T., Shirayama, Y., Matsuzawa, D., Hasegawa, T., Kanahara, N., Hashimoto, T., Shiraishi, T., Shiina, A., Fukami, G., Fujisaki, M., Watanabe, H., Nakazato, M., Asano, M., Kimura, S., Hashimoto, K., & Iyo, M. (2011). Associations of serum brain-derived neurotrophic factor with cognitive impairments and negative symptoms in schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1836–1840.

    CAS  Google Scholar 

  • Niu, C., & Yip, H. K. (2011). Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons. Journal of Neuropathology and Experimental Neurology, 70, 634–652.

    CAS  PubMed  Google Scholar 

  • Niu, S., Yabut, O., & D’Arcangelo, G. (2008). The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. The Journal of Neuroscience, 28, 10339–10348.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nouel, D., Burt, M., Zhang, Y., Harvey, L., & Boksa, P. (2012). Prenatal exposure to bacterial endotoxin reduces the number of GAD67- and reelin-immunoreactive neurons in the hippocampus of rat offspring. European Neuropsychopharmacology, 22, 300–307.

    CAS  PubMed  Google Scholar 

  • O’Donnell, P., Lewis, B. L., Weinberger, D. R., & Lipska, B. K. (2002). Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats. Cerebral Cortex, 12, 975–982.

    PubMed  Google Scholar 

  • Olas, B., Kedzierska, M., & Wachowicz, B. (2008). Comparative studies on homocysteine and its metabolite – Homocysteine thiolactone action in blood platelets in vitro. Platelets, 19, 520–527.

    CAS  PubMed  Google Scholar 

  • Onishi, T., Iwashita, H., Uno, Y., Kunitomo, J., Saitoh, M., Kimura, E., Fujita, H., Uchiyama, N., Kori, M., & Takizawa, M. (2011). A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. Journal of Neurochemistry, 119, 1330–1340.

    CAS  PubMed  Google Scholar 

  • Pae, C. U., Chiesa, A., Porcelli, S., Han, C., Patkar, A. A., Lee, S. J., Park, M. H., Serretti, A., & De Ronchi, D. (2012). Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology, 65(1), 1–11.

    CAS  PubMed  Google Scholar 

  • Palomino, A., Vallejo-Illarramendi, A., Gonzalez-Pinto, A., Aldama, A., Gonzalez-Gomez, C., Mosquera, F., González-García, G., & Matute, C. (2006). Decreased levels of plasma BDNF in first-episode schizophrenia and bipolar disorder patients. Schizophrenia Research, 6, 321–322.

    Google Scholar 

  • Park, S. W., Lee, J. G., Kong, B. G., Lee, S. J., Lee, C. H., Kim, J. I., & Kim, Y. H. (2009). Genetic association of BDNF val66met and GSK-3beta-50 T/C polymorphisms with tardive dyskinesia. Psychiatry and Clinical Neuroscience, 63, 433–439.

    CAS  Google Scholar 

  • Pascual, M., Pérez-Sust, P., & Soriano, E. (2004). The GABAergic septohippocampal pathway in control and reeler mice: Target specificity and termination onto reelin-expressing interneurons. Molecular and Cellular Neuroscience, 25, 679–691.

    CAS  PubMed  Google Scholar 

  • Pedrini, M., Chendo, I., Grande, I., Lobato, M. I., Belmonte-de-Abreu, P. S., Lersch, C., Walz, J., Kauer-Sant’anna, M., Kapczinski, F., & Gama, C. S. (2011). Serum brain-derived neurotrophic factor and clozapine daily dose in patients with schizophrenia, a positive correlation. Neuroscience Letters, 491, 207–210.

    CAS  PubMed  Google Scholar 

  • Pedrini, M., Massuda, R., Fries, G. R., de Bittencourt Pasquali, M. A., Schnorr, C. E., Moreira, J. C. F., Teixeira, A. L., Lobato, M. I. R., Walz, J. C., Belmonte-de-Abreu, P. S., Kauer-Sant’anna, M., Kapczinski, F., & Gama, C. S. (2012). Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. Journal of Psychiatric Research, 46, 819–824.

    PubMed  Google Scholar 

  • Perez-Costas, E., Gandy, J. C., Melendez-Ferro, M., Roberts, R. C., & Bijur, G. N. (2010). Light and electron microscopy study of glycogen synthase kinase-3beta in the mouse brain. PloS One, 5, e8911.

    PubMed Central  PubMed  Google Scholar 

  • Pesold, C., Impagnatiello, F., Pisu, M. G., Uzunov, D. P., Costa, E., Guidotti, A., & Caruncho, H. J. (1998). Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proceedings of the National Academy of Sciences of the United States of America, 95, 3221–3226.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pert, L., Ferriter, M., & Saul, C. (2004). Parental loss before the age of 16 years: A comparative study of patients with personality disorder and patients with schizophrenia in a high secure hospital’s population. Psychology and Psychotherapy, 77(Pt 3), 403–407.

    CAS  PubMed  Google Scholar 

  • Pisanté, A., Bronstein, M., Yakir, B., & Darvasi, A. (2009). A variant in the reelin gene increases the risk of schizophrenia and schizoaffective disorder but not bipolar disorder. Psychiatric Genetics, 19, 212.

    PubMed  Google Scholar 

  • Pollard, M., Varin, C., Hrupka, B., Pemberton, D. J., Steckler, T., & Shaban, H. (2012). Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia. Behavioural Brain Research, 227, 184–193.

    CAS  PubMed  Google Scholar 

  • Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from human and animal models. Environmental Health Perspectives, 108(Suppl. 3), 511–533.

    PubMed Central  PubMed  Google Scholar 

  • Richard, M. D., & Brahm, N. C. (2012). Schizophrenia and the immune system: Pathophysiology, prevention, and treatment. American Journal of Health-System Pharmacy, 69, 757–766.

    CAS  PubMed  Google Scholar 

  • Rizos, E. N., Rontos, I., Laskos, E., Arsenis, G., Michalopoulos, P. G., et al. (2008). Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32, 1308–1311.

    CAS  Google Scholar 

  • Rizos, E. N., Papadopoulou, A., Laskos, E., Michalopoulos, P. G., Kastania, D., Vasilopoulos, D., Katsafouros, K., & Lykouras, L. (2010). Reduced serum BDNF levels in patients with chronic schizophrenic disorder in relapse, who were treated with typical or atypical antipsychotics. The World Journal of Biological Psychiatry, 1, 251–255.

    Google Scholar 

  • Rosenberg, S. D., Lu, W., Mueser, K. T., Jankowski, M. K., & Cournos, F. (2007). Correlates of adverse childhood events among adults with schizophrenia spectrum disorders. Psychiatric Services, 58, 245–253.

    PubMed  Google Scholar 

  • Sachdev, P. S., Valenzuela, M., Wang, X. L., Looi, J. C., & Brodaty, H. (2002). Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology, 58, 1539–1541.

    CAS  PubMed  Google Scholar 

  • Sanderson, T. M., Cotel, M. C., O’Neill, M. J., Tricklebank, M. D., Collingridge, G. L., & Sher, E. (2012). Alterations in hippocampal excitability, synaptic transmission and synaptic plasticity in a neurodevelopmental model of schizophrenia. Neuropharmacology, 62, 1349–1358.

    CAS  PubMed  Google Scholar 

  • Sawa, A., & Snyder, S. H. (2002). Schizophrenia: Diverse approaches to a complex disease. Science, 296, 692–695.

    CAS  PubMed  Google Scholar 

  • Schutte, D. L., Reed, D., Decrane, S., & Ersig, A. L. (2011). Saitohin and APOE polymorphisms influence cognition and function in persons with advanced alzheimer disease. Dementia and Geriatric Cognitive Disorders, 32, 94–102.

    CAS  PubMed  Google Scholar 

  • Shinohara, M., Ybanez, M. D., Win, S., Than, T. A., Jain, S., Gaarde, W. A., Han, D., & Kaplowitz, N. (2010). Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. The Journal of Biological Chemistry, 285, 8244–8255.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh, K. K., De Rienzo, G., Drane, L., Mao, Y., Flood, Z., Madison, J., Ferreira, M., Bergen, S., King, C., Sklar, P., Sive, H., & Tsai, L. H. (2011). Common DISC1 polymorphisms disrupt Wnt/GSK3β signaling and brain development. Neuron, 72, 545–558.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somenarain, L., & Jones, L. B. (2010). A comparative study of MAP2 immunostaining in areas 9 and 17 in schizophrenia and huntington chorea. Journal of Psychiatric Research, 44, 694–699.

    PubMed  Google Scholar 

  • Song, H., Ueno, S., Numata, S., Iga, J., Shibuya-Tayoshi, S., Nakataki, M., Tayoshi, S., Yamauchi, K., Sumitani, S., Tomotake, T., Tada, T., Tanahashi, T., Itakura, M., & Ohmori, T. (2007). Association between PNPO and schizophrenia in the Japanese population. Schizophrenia Research, 97, 264–270.

    PubMed  Google Scholar 

  • Steiner, J., Bogerts, B., Schroeter, M. L., & Bernstein, H. G. (2011). S100B Protein in neurodegenerative disorders. Clinical Chemistry and Laboratory Medicine, 49, 409–424.

    CAS  PubMed  Google Scholar 

  • Stone, J. M., Day, F., Tsagaraki, H., Valli, M. L. M. A., Lythgoe, D. J., O’Gorman, R. L., Barker, G. J., McGuire, P. K., & OASIS. (2009). Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to grey matter volume. Biological Psychiatry, 66, 533–539.

    CAS  PubMed  Google Scholar 

  • Sullivan, E. M., & O’Donnell, P. (2012). Inhibitory interneurons, oxidative stress, and schizophrenia. Schizophrenia Bulletin, 38, 373–376.

    PubMed Central  PubMed  Google Scholar 

  • Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60, 1187–1192.

    PubMed  Google Scholar 

  • Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J., & Alberini, C. M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 144, 810–823.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki, K., Nakamura, K., Iwata, Y., Sekine, Y., Kawai, M., Sugihara, G., Tsuchiya, K. J., Suda, S., Matsuzaki, H., Takei, N., Hashimoto, K., & Mori, N. (2008). Decreased expression of reelin receptor VLDLR in peripheral lymphocytes of drug-naive schizophrenic patients. Schizophrenia Research, 98, 148–156.

    PubMed  Google Scholar 

  • Swanson, R. A. (1992). Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Canadian Journal of Physiology and Pharmacology, 70(Suppl), S138–S144.

    CAS  PubMed  Google Scholar 

  • Tan, Y. L., Zhou, D. F., & Zhang, X. Y. (2005). Decreased plasma brain-derived neurotrophic factor levels in schizophrenic patients with tardive dyskinesia: Association with dyskinetic movements. Schizophrenia Research, 74, 263–270.

    PubMed  Google Scholar 

  • Tayoshi, S., Sumitani, S., Taniguchi, K., Shibuya-Tayoshi, S., Numata, S., Iga, J., Nakataki, M., Ueno, S., Harada, M., & Ohmori, T. (2009). Metabolite changes and gender differences in schizophrenia using 3-Testa proton magnetic resonance spectroscopy (1H-MRS). Schizophrenia Research, 108, 69–77.

    PubMed  Google Scholar 

  • Tedla, Y., Shibre, T., Ali, O., Tadele, G., Woldeamanuel, Y., Asrat, D., Aseffa, A., Mihret, W., Abebe, M., Alem, A., Medhin, G., & Habte, A. (2011). Serum antibodies to toxoplasma gondii and herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: A case-control study. Ethiopian Medical Journal, 49, 211–220.

    PubMed  Google Scholar 

  • Théberge, J., Williamson, K. E., Aoyama, N., Drost, D. J., Manchanda, R., Malla, A. K., Northcott, S., Menon, R. S., Neufeld, R. W., Rajakumar, N., Pavlosky, W., Densmore, M., Schaefer, B., & Williamson, P. C. (2007). Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. The British Journal of Psychiatry, 191, 325–334.

    PubMed  Google Scholar 

  • Thoma, R. J., Monnig, M., Hanlon, F. M., Miller, G. A., Petropoulos, H., Mayer, A. R., Yeo, R., Euler, M., Lysne, P., Moses, S. N., & Cañive, J. M. (2009). Hippocampus volume and episodic memory in schizophrenia. Journal of the International Neuropsychological Society, 15, 182–195.

    PubMed Central  PubMed  Google Scholar 

  • Tibbo, P., Hanstock, C., Valiakalayil, A., & Allen, P. (2004). 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. The American Journal of Psychiatry, 161, 1116–1118.

    PubMed  Google Scholar 

  • Tosic, M., Ott, J., Barral, S., Bovet, P., Deppen, P., Gheorghita, F., Matthey, M. L., Parnas, J., Preisig, M., Saraga, M., Solida, A., Timm, S., Wang, A. G., Werge, T., Cuénod, M., & Do, K. Q. (2006). Schizophrenia and oxidative stress: Glutamate cysteine ligase modifier as a susceptibility gene. The American Journal of Human Genetics, 79, 586–592.

    CAS  Google Scholar 

  • Traver, S., Marien, M., Martin, E., Hirsch, E. C., & Michel, P. P. (2006). The phenotypic differentiation of locus coeruleus noradrenergic neurons mediated by brain-derived neurotrophic factor is enhanced by corticotrophin releasing factor through the activation of a cAMP-dependent signaling pathway. Molecular Pharmacology, 70, 30–40.

    CAS  PubMed  Google Scholar 

  • Tseng, K. Y., Lewis, B. L., Lipska, B. K., & O’Donnell, P. (2007). Post-pubertal disruption of medial prefrontal cortical dopamine-glutamate interactions in a developmental animal model of schizophrenia. Biological Psychiatry, 62, 730–738.

    PubMed Central  PubMed  Google Scholar 

  • Tseng, K. Y., Chambers, R. A., & Lipska, B. K. (2009). The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behavioural Brain Research, 204, 295–305.

    PubMed Central  PubMed  Google Scholar 

  • Tueting, P., Doueiri, M. S., Guidotti, A., Davis, J. M., & Costa, E. (2006). Reelin down-regulation in mice and psychosis endophenotypes. Neuroscience and Biobehavioral Reviews, 30, 1065–1077.

    CAS  PubMed  Google Scholar 

  • Turetsky, B. I., Moberg, P. J., Roalf, D. R., Arnold, S. E., & Gur, R. E. (2003). Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Archives of General Psychiatry, 60, 1193–1200.

    PubMed  Google Scholar 

  • Valenti, O., Cifalli, P., Gill, K. M., & Grace, A. A. (2011). Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. The Journal of Neuroscience, 31, 12330–12338.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ventruti, A., Kazdoba, T. M., Niu, S., & D’Arcangelo, G. (2011). Reelin deficiency cause specific defects in the molecular composition of the synapses in the adult brain. Neuroscience, 189, 32–42.

    CAS  PubMed  Google Scholar 

  • Virgili, M., Vandi, M., & Contestabile, A. (1997). Ischemic and excitotoxic damage to brain slices from normal and microencephalic rats. Neuroscience Letters, 233, 53–57.

    CAS  PubMed  Google Scholar 

  • Walton, N. M., Shin, R., Tajinda, K., Heusner, C. L., Kogan, J. H., Miyake, S., Chen, Q., Tamura, K., & Matsumoto, M. (2012). Adult neurogenesis transiently generates oxidative stress. PloS One, 7(4), e35264.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Gao, L., Conrad, C. G., & Andreadis, A. (2011). Saitohin, which is nested within the tau gene, interacts with tau and Abl and its human-specific allele influences Abl phosphorylation. Journal of Cellular Biochemistry, 112, 3482–3488.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welch, K. A., McIntosh, A. M., Job, D. E., Whalley, H. C., Moorhead, T. W., Hall, J., Owens, D. G., Lawrie, S. M., & Johnstone, E. C. (2011). The impact of substance use on brain structure in people at high risk of developing schizophrenia. Schizophrenia Bulletin, 37, 1066–1076.

    PubMed Central  PubMed  Google Scholar 

  • Wender, R., Brown, A. M., Fern, R., Swanson, R. A., Farrell, K., & Ransom, B. R. (2000). Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. The Journal of Neuroscience, 20, 6804–6810.

    CAS  PubMed  Google Scholar 

  • Wexler, B. E., Zhu, H., Bell, M. D., Nicholls, S. S., Fulbright, R. K., Gore, J. C., Colibazzi, T., Amat, J., Bansal, R., & Peterson, B. S. (2009). Neuropsychological near normality and brain structure abnormality in schizophrenia. The American Journal of Psychiatry, 166, 189–195.

    PubMed  Google Scholar 

  • Wexler, E. M., & Geschwind, D. H. (2011). DISC1: A schizophrenia gene with multiple personalities. Neuron, 72, 501–503.

    CAS  PubMed  Google Scholar 

  • Yang, Y. Q., Sun, S., Yu, Y. Q., Li, W. J., Zhang, X., & Xiu, M. H. (2011). Decreased serum brain-derived neurotrophic factor levels in schizophrenic patients with tardive dyskinesia. Neuroscience Letters, 502, 37–40.

    CAS  PubMed  Google Scholar 

  • Yao, J. K., Reddy, R., Meelhinny, L. G., & Van Kammen, D. P. (1998). Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophrenia Research, 55, 33–34.

    Google Scholar 

  • Yao, J. K., Reddy, R., Meelhinny, L. G., & Van Kammen, D. P. (2001). Oxidative damage and schizophrenia: An overview of the evidence and its therapeutic implications. CNS Drugs, 15, 287–310.

    CAS  PubMed  Google Scholar 

  • Yoshimura, R., Hori, H., Sugita, N., Ueda, N., & Kakihara, S. (2007). Treatment with risperidone for 4 weeks increased plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) levels, but did not alter plasma brain-derived neurotrophic factor (BDNF) levels in schizophrenic patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31, 1072–1077.

    CAS  Google Scholar 

  • Yoshimura, R., Ueda, N., Hori, H., Ikenouchi-Sugita, A., Umene-Nakano, W., et al. (2010). Different patterns of longitudinal changes in plasma levels of catecholamine metabolites and brain-derived neurotrophic factor after administration of atypical antipsychotics in first episode untreated schizophrenic patients. The World Journal of Biological Psychiatry, 11, 256–261.

    PubMed  Google Scholar 

  • Yu, Q., Plis, S. M., Erhardt, E. B., Allen, E. A., Sui, J., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2011). Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103.

    PubMed Central  PubMed  Google Scholar 

  • Zai, C. C., Tiwari, A. K., De Luca, V., Muller, D. J., Bulgin, N., Hwang, R., Zai, G. C., King, N., Voineskos, A. N., Meltzer, H. Y., Lieberman, J. A., Potkin, S. G., Remington, G., & Kennedy, J. L. (2009). Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. European Neuropsychopharmacology, 19, 317–328.

    CAS  PubMed  Google Scholar 

  • Zaidel, D. W., Esiri, M. M., & Harrison, P. J. (1997). Size, shape and orientation of neurons in the left and right hippocampus: Investigation of normal asymmetries and alterations in schizophrenia. The American Journal of Psychiatry, 154, 812–818.

    CAS  PubMed  Google Scholar 

  • Zhang, X. Y., Xiu, M. H., da Chen, C., Zhu, F. Y., Wu, G. Y., Haile, C. N., Lu, L., Kosten, T. A., & Kosten, T. R. (2010). Increased S100B serum levels in schizophrenic patients with tardive dyskinesia: Association with dyskinetic movements. Journal of Psychiatric Research, 44, 429–433.

    PubMed  Google Scholar 

  • Zhang, X. Y., Chen, D. C., Xiu, M. H., Hui, L., Liu, H., Luo, X., Zuo, L., Zhang, H., Kosten, T. A., & Kosten, T. R. (2012a). Association of functional dopamine-beta-hydroxylase (DBH) 19 bp insertion/deletion polymorphism with smoking severity in male schizophrenic smokers. Schizophrenia Research, 141(1), 48–53. PMID: 22871345.

    Google Scholar 

  • Zhang, X. Y., Liang, J., Chen, D. C., Xiu, M. H., De Yang, F., Kosten, T. A., & Kosten, T. R. (2012b). Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology (Berlin), 222(2), 277–284. PMID: 22274000.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Archer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Archer, T., Karilampi, U., Ricci, S., Rapp-Ricciardi, M. (2014). Neurotoxic Vulnerability Underlying Schizophrenia Spectrum Disorders. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_119

Download citation

Publish with us

Policies and ethics