Skip to main content

Silicon Solar Cells , Thin-film

  • Reference work entry
  • First Online:
Solar Energy

Definition of Subject and Its Importance

Terrestrial photovoltaics , in which electricity is generated directly from sunlight, is one of the technologies in renewable energy which is actively pursued. There are several approaches that have been developed and are now in mass production with currently the ones based on crystalline silicon wafers being dominant. However, the ones based on thin films have a high potential for significantly lower cost below that of these well-established technologies. An attractive alternative for such a sustainable energy supply is the silicon thin-film solar cell technology. Because of the large differences between these and the well-understood crystalline solar cells , it is important to understand their nature and limitations on performance. It is also essential to understand the advantages that they offer for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Amorphous:

A material with no long-range order and crystalline structure.

Gap states:

Defect-related states in the forbidden gap of semiconductor materials affecting their optical and electrical properties.

Metastability:

The creation of light-induced defects and corresponding gap states that can be annealed out (in the case of hydrogenated amorphous silicon and related alloys) at temperatures around or above 150°C.

Microcrystalline:

Structure of a material composed of 1 μm sized crystallites. Term used for silicon thin-film layers composed of a micron or sub-micrometer sized crystallites. See also nanocrystalline.

Microstructure:

Structure of a material on a scale of a micrometer or less.

Nanocrystalline:

Structure of a material composed of nanometer (more generally sub-micrometer) sized crystallites.

n-i-p solar cell:

n-type - intrinsic – p-type Si thin-film solar cell structures where the n-type layer is deposited first onto a (usually opaque) substrate.

Optical enhancement:

Enhancement of absorption of sunlight in a thin-film solar cells in particular at the longer wavelengths with use of textured and reflective layers.

p-i-n solar cell:

p-type – intrinsic – n-type Si thin-film solar cell structures where the p-type layer is deposited first onto a (transparent) substrate.

Plasma-enhanced chemical vapor deposition (PECVD):

Deposition processes in which materials are deposited onto a substrate by the decomposition of gases with a plasma discharge.

Protocrystalline silicon:

Amorphous hydrogenated silicon deposited under conditions where the amorphous microstructure changes with thickness.

Stabilized efficiency:

Steady-state efficiency value attained after light-induced degradation of a solar cell.

Transparent conductive oxide (TCO):

Transparent thin films, typically made of tin or zinc oxide, which serve as electrical contacts to the solar cells.

Bibliography

Primary Literature

  1. International Energy Agency (2010) Technology roadmap: solar photovoltaic energy. http://www.iea-pvps.org

  2. Chittik RC, Alexander JH, Sterling HE (1969) The preparation and properties of amorphous silicon. J Electrochem Soc 116:77

    Article  Google Scholar 

  3. Carlson DE (1977) Semiconductor device having a body of amorphous silicon. US Patent 4,064,521

    Google Scholar 

  4. Spear WE, LeComber PG (1975) Substitutional doping of amorphous silicon. Solid State Commun 17:1193

    Article  Google Scholar 

  5. Carlson DE, Wronski CR (1976) Amorphous silicon solar cells. Appl Phys Lett 28:671

    Article  Google Scholar 

  6. Carlson DE, Wronski CR, Triano A, Daniel RE (1976) Solar cells using Schottky barriers on amorphous silicon. In: Proceedings of 12th IEEE photovoltaic specialists conference, Baton Rouge, LA, p 893

    Google Scholar 

  7. Brodsky MH, Frisch MA, Ziegler JF, Lanfard WA (1977) Quantitative analysis of hydrogen in glow discharge amorphous silicon. Appl Phys Lett 30:561

    Article  Google Scholar 

  8. Staebler DL, Wronski CR (1977) Reversible conductivity change in discharge produced amorphous silicon. Appl Phys Lett 31:292

    Article  Google Scholar 

  9. Hanak JJ, Korsun V (1982) Optical stability studies of a-Si:H solar cells. In: Proceeding of the 16th IEEE photovoltaic specialists conference, San Diego, CA, p 1381

    Google Scholar 

  10. Vepřek S, Mareček V (1968) The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electron 11:683–684

    Article  Google Scholar 

  11. Vepřek S, Iqbal Z, Oswald HR, Webb AP (1981) Properties of polycrystalline silicon prepared by chemical transport in hydrogen plasma at temperatures between 80 and 400 degrees C. J Phys C 14:295–308

    Article  Google Scholar 

  12. Vepřek S, Iqbal Z, Kühne RO, Capezzuto P, Sarott F-A, Gimzewski JK (1983) Properties of microcrystalline silicon: IV: electrical conductivity, electron spin resonance and the effect of gas adsorption. J Phys C 16:6241–6262

    Article  Google Scholar 

  13. Vepřek S, Heintze M, Sarott F-A, Jurcik-Rajman M, Willmott P (1988) Mechanisms of plasma induced silicon deposition and the control of the properties of the deposit. Mater Res Soc Symp Proc 118:3–17

    Article  Google Scholar 

  14. Usui S, Kikuchi M (1979) Properties of heavily doped GD-Si with low resistivity. J Non-Cryst Solids 34:1–11

    Article  Google Scholar 

  15. Spear WE, Willeke G, Le Comber PG, Fitzgerald AG (1981) Electronic properties of microcrystalline silicon films prepared in a glow discharge plasma. J Phys Colloq 42(C4):257–260

    Google Scholar 

  16. Wang C, Lukovsky G (1990) Intrinsic microcrystalline silicon deposited by remote PECVD: a new thin-film photovoltaic material. In: Proceedings of the 21st IEEE photovoltaic specialist conference, Kissimmee, FL, pp 1614–1618

    Google Scholar 

  17. Tanaka K, Matsuda A (1987) Glow-discharge amorphous silicon: growth process and structure. Mater Sci Rep 2:139

    Article  Google Scholar 

  18. Yang L, Chen LF (1994) The effect of H2 dilution on the stability of a-Si:H based solar cells. Mater Res Soc Symp Proc 336:669

    Article  Google Scholar 

  19. Yang J, Xu X, Guha S (1994) Stability studies of hydrogenated amorphous silicon alloy solar cells prepared with hydrogen dilution. Mater Res Soc Symp Proc 336:687

    Article  Google Scholar 

  20. Bennett M, Rajan K, Kritikson K (1993) Amorphous silicon based solar cells deposited from H2-diluted SiH4 at low temperatures. In: Proceedings of 23rd IEEE photovoltaic specialists conference, Louisville, KY, p 845

    Google Scholar 

  21. Lee Y, Jiao L, Liu H, Lu Z, Collins RW, Wronski CR (1996) Stability of a-Si:H solar cells and corresponding intrinsic materials fabricated using hydrogen diluted silane. In: Proceedings of 25th IEEE photovoltaic specialists conference, Washington, DC, p 1165

    Google Scholar 

  22. Lu Z, Jiao H, Koval K, Collins RW, Wronski CR (1999) Characteristics of different thickness a-Si:H/metal Schottky barrier cell structures-results and analysis. Mater Res Soc Symp Proc 557:785

    Article  Google Scholar 

  23. Collins RW, Koh J, Lu Y, Kim S, Burnham YS, Wronski CR (1996) Characterization of amorphous silicon solar cell preparation processes by real time spectroscopic ellipsometry. In: Proceedings of 25th IEEE photovoltaic specialists conference, Washington, DC, p 1035

    Google Scholar 

  24. Collins RW, Koh J, Ferlauto A, Rovira P, Lee Y, Koval R, Wronski CR (2000) Real time analysis of amorphous and microcrystalline silicon film growth by multichannel ellipsometry. Thin Solid Films 364:129

    Article  Google Scholar 

  25. Flückiger R, Meier J, Keppner H, Götz M, Shah A (1993) Preparation of undoped and doped microcrystalline silicon (μc-Si:H) by VHF-GD for p-i-n solar cells. In: Proceedings of the 23th IEEE photovoltaic specialists conference, Louisville, KY, pp 839–844

    Google Scholar 

  26. Meier J, Flückiger R, Keppner H, Shah A (1994) Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Appl Phys Lett 65:860–862

    Article  Google Scholar 

  27. Zanzucchi P, Wronski CR, Carlson DE (1977) Optical and photoconductivity properties of discharge produced a-Si. J Appl Phys 48:5227

    Article  Google Scholar 

  28. Tawada Y, Okamoto H, Hamakawa Y (1981) a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency. Appl Phys Lett 39:237

    Article  Google Scholar 

  29. Nakamura G, Sato K, Ishihara T, Usui M, Okaniwa K, Yukimoto Y (1983) Tandem type amorphous solar cells. J Non-Cryst Solids 59–60:1111

    Article  Google Scholar 

  30. Ishihara T, Terazono K, Sasaki H, Kawabata K, Itagaki T, Morikawa H, Deguchi M, Sato K, Usui M, Okaniwa K, Aiga M, Otsubo M, Fujikawa K (1987) High efficiency triple-junction amorphous solar cells. In: Proceedings of the 19th IEEE photovoltaic specialists conference, New Orleans, LA, p 749

    Google Scholar 

  31. Yang J, Banerjee A, Lord K, Guha S (1998) Correlation of component cells with high efficiency amorphous silicon alloy triple junction solar cells and modules. In: Proceedings of the 2nd world conference on photovoltaic solar energy conversion, Osaka, Japan, p 387

    Google Scholar 

  32. Meier J, Dubail S, Fischer D, Anna Selvan JA, Pellaton Vaucher N, Platz R, Hof C, Flückiger R, Kroll U, Wyrsch N, Torres P, Keppner H, Shah A, Ufert K (1995) The ‘Micromorph’ solar cells: a new way to high efficiency thin film silicon solar cells. In: Proceedings of the 13th European photovoltaic solar energy conference, Nice, France, pp 1445–1450

    Google Scholar 

  33. Shah A, Vanecek M, Meier J, Meillaud F, Guillet J, Fischer D, Droz C, Niquille X, Faÿ S, Vallat-Sauvain E, Terrazzoni-Daudrix V, Bailat J (2004) Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and “micromorph tandem” solar cells. J Non-Cryst Solids 338–340:639–645

    Article  Google Scholar 

  34. Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Dev 29:300

    Article  Google Scholar 

  35. Deckman H, Wronski CR, Yablonovitch E (1984) Optical enhancement of solar cells. In: Proceedings of the 17th IEEE photovoltaic specialists conference, Kissimmee, FL, p 995

    Google Scholar 

  36. Arya RR, Carlson DE (2002) Amorphous silicon PV module manufacturing at BP solar. Prog Photovoltaics 10:69

    Article  Google Scholar 

  37. Hanak JJ (1981) Laser processing technique for fabricating series connected and tandem junction series-connected solar cells into a solar battery. US Patent 4,292,092

    Google Scholar 

  38. Yan B, Yue G, Xu X, Yang J, Guha S (2010) High efficiency amorphous and nanocrystalline silicon solar cells. Phys Status Solidi A 207:671–677

    Article  Google Scholar 

  39. Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Tanaka H, Sasaki T, Tawada Y (2003) Novel hybrid thin film silicon solar cell and module. In: Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, pp 2789–2792

    Google Scholar 

  40. Curtins H, Wyrsch N, Favre M, Shah AV (1987) Influence of plasma excitation frequency for a-Si:H thin film deposition. Plasma Chem Plasma Process 7:267–273

    Article  Google Scholar 

  41. Finger F, Kroll U, Viret V, Shah A, Beyer W, Tang X-M, Weber J, Howling A, Hollenstein C (1992) Influences of high exitation frequency (70 MHz) in the glow discharge technique on the process plasma and the properties of hydrogenated amorphous silicon. J Appl Phys 71:5665–5674

    Article  Google Scholar 

  42. Zedlitz R, Heintze M, Bauer GH (1999) Analysis of VHF glow discharge of a Si:H over a wide frequency range. Mater Res Soc Symp Proc 258:147–152

    Article  Google Scholar 

  43. Watanabe T, Azuma K, Nakatani M, Suzuki K, Sonobe T, Shimada T (1986) Chemical vapor deposition of a-Si:H films utilising a microwave excited Ar plasma stream Japanese. J Appl Phys 25:1805

    Article  Google Scholar 

  44. Saito K, Sano M, Ogawa K, Kajita I (1993) High efficiency a-Si:H alloy cell deposited at high deposition rate. J Non-Cryst Solids 164–166:689

    Article  Google Scholar 

  45. Tsai CC, Knights JC, Chang G, Wacker B (1986) Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon. J Appl Phys 59:2998

    Article  Google Scholar 

  46. Shimizu T, Zhang Q, Nishino T, Takashima H, Kumeda M (1996) Influence of hydrogen content and Si-H bond structure on photocreated dangling bonds in hydrogenated amorphous silicon films. Jpn J Appl Phys 35:4409

    Article  Google Scholar 

  47. Ganguly G, Matsuda A (1996) Role of hydrogen dilution in improvement of a-SiGe:H alloys. J Non-Cryst Solids 198–200:559

    Article  Google Scholar 

  48. Smets AHM, Matsui T, Kondo M (2008) High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime. J Appl Phys 104:034508

    Article  Google Scholar 

  49. Carlson DE, Gleaton M, Ganguly G (2000) Effects of oil and dopant contaminants on the performance of amorphous silicon solar cells. In: Proceedings of the 16th European photovoltaic solar energy conference, Glasgow, UK, pp 502–505

    Google Scholar 

  50. Kinoshita T, Isomura M, Hishikawa Y, Tsuda S (1996) Influence of oxygen and nitrogen in the intrinsic layer of a-Si solar cells. Jpn J Appl Phys 35:3819

    Article  Google Scholar 

  51. Torres P, Meier J, Flückiger R, Kroll U, AnnaSelvan J, Keppner H, Shah A, Littlewood SD, Kelly IE, Giannoulès P (1996) Device grade microcrystalline silicon owing to reduced oxygen contamination. Appl Phys Lett 69:1373–1375

    Article  Google Scholar 

  52. Kilper T, van den Donker MN, Grunsky D, Mück A, Schmitz R, Zastrow U, Rech B, Bräuer G, Klein S, Repmann T (2006) Quantification of the influence of oxygen and nitrogen contamination on the performance of microcrystalline silicon solar cells. In: Proceeding of the 21st European photovoltaic solar energy conference, pp 1738–1743

    Google Scholar 

  53. Hrunski D, Rech B, Schmitz R, Mück A, Pinçon O, Breuer U, Beyer W (2008) Influence of contaminations on the performance of thin-film silicon solar cells prepared after in situ reactor plasma cleaning. Thin Solid Films 516:4639–4644

    Article  Google Scholar 

  54. Collins RW (1994) Real time spectroscopic ellipsometry studies of the nucleation, growth and optical functions of thin films Part 1: tetrahedrally bonded materials. Physics of thin films. Academic Press, New York, pp 49–125

    Google Scholar 

  55. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energ Mat Sol C 78:469–491

    Article  Google Scholar 

  56. Feitknecht L, Meier J, Torres P, Zürcher J, Shah A (2002) Plasma deposition of thin film silicon: kinetics monitored by optical emission spectroscopy. Sol Energ Mat Sol C 74:539–545

    Article  Google Scholar 

  57. Matsuda A (1983) Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. J Non-Cryst Solids 59&60:767–774

    Article  Google Scholar 

  58. Strahm B, Howling AA, Sansonnens L, Hollenstein C (2007) Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges. Plasma Sources Sci Technol 16:80–89

    Article  Google Scholar 

  59. Roca i Cabarrocas P, Fontcuberta i Morral A, Poissant Y (2002) Growth and optoelectronic properties of polymorphous silicon thin films. Thin Solid Films 403:39–46

    Google Scholar 

  60. Koh J, Fujiwara H, Lu Y, Wronski CR, Collins RW (1998) Real time spectroscopic ellipsometry for characterization and optimization of amorphous silicon-based solar cell structures. Thin Solid Films 313–314:469

    Article  Google Scholar 

  61. Fujiwara H, Koh J, Wronski CR, Collins RW, Burnham JS (1998) Optical depth profiling of band gap engineered interfaces in amorphous silicon solar cells at monolayer resolution. Appl Phys Lett 72:2993

    Article  Google Scholar 

  62. Ferlauto AS, Ferreira GM, Koval RJ, Pearce JM, Wronski CR, Collins RW, Al-Jassim MM, Jones KM (2002) Thickness evolution of the microstructural and optical properties of Si:H films in the amorphous-to-microcrystalline phase transition region. In: Proceedings of 29th IEEE photovoltaic specialists conference, New Orleans, LA, p 1076

    Google Scholar 

  63. Ferlauto AS, Koval RJ, Wronski CR, Collins RW (2001) Phase diagrams for the optimization of rf plasma enhanced chemical vapor deposition of a-Si:H: variations in plasma power and substrate temperature. Mater Res Soc Symp Proc 664:A5.4.1

    Google Scholar 

  64. Ferreira GM, Ferlauto AS, Pearce JM, Wronski CR, Ross C, Collins RW (2004) Comparison of phase diagrams for vhf and rf plasma-enhanced chemical vapor deposition of Si:H films. Mater Res Soc Symp Proc 808:A5.2

    Google Scholar 

  65. Lu Y, Kim S, Gunes M, Lee Y, Wronski CR, Collins RW (1994) Process-property relationships for a-Si1-xCx:H deposition: excursions in parameter space guided by real time spectroellipsometry. Mater Res Soc Symp Proc 336:595

    Article  Google Scholar 

  66. Tsu DV, Chao BS, Ovshinsky SR, Guha S, Yang J (1998) Effect of hydrogen dilution on the structure of amorphous silicon alloys. Appl Phys Lett 71:1317

    Article  Google Scholar 

  67. Guha S, Yang J, Williamson DL, Lubianiker Y, Cohen JD, Mahan AH (1999) Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl Phys Lett 74:1860

    Article  Google Scholar 

  68. Wronski CR, Pearce JM, Koval RK, Niu X, Ferlauto AS, Koh J, Collins RW (2002) Light induced defect creation kinetics in thin film protocrystalline silicon materials and their solar cells. Mater Res Soc Symp Proc 715:A13.4

    Google Scholar 

  69. Deng J, Pearce JM, Koval RJ, Vlahos V, Collins RW, Wronski CR (2003) Absence of carrier recombination associated with the defect pool model in intrinsic amorphous silicon layers: evidence from current–voltage characteristics on p-i-n and n-i-p solar cells. Appl Phys Lett 82:3023

    Article  Google Scholar 

  70. Koval RJ, Koh J, Lu Z, Jiao L, Wronski CR, Collins RW (1999) Performance and stability of Si:H p-i-n solar cells with i-layers prepared at the thickness-dependent amorphous-to-microcrystalline phase boundary. Appl Phys Lett 75:1553

    Article  Google Scholar 

  71. Koval RJ, Pearce JM, Ferlauto AS, Collins RW, Wronski CR (2001) Evolution of the mobility gap with thickness in hydrogen-diluted intrinsic Si:H materials in the phase transition region and its effect on p-i-n solar cell characteristics. Mater Res Soc Symp Proc 664:A16.4

    Google Scholar 

  72. Koval RJ, Pearce JM, Chen C, Ferreira GM, Ferlauto AS, Collins RW, Wronski CR (2002) Microstructurally engineered p-layers for obtaining high open-circuit voltages in a-Si:H n-i-p solar cells. In: Proceedings of the 29th IEEE photovoltaic specialists conference, New Orleans, LA, p 1090

    Google Scholar 

  73. Podraza NJ, Ferreira GM, Wronski CR, Collins RW (2005) Development of deposition phase diagrams for thin film Si:H and Si1-xGex:H using real time spectroscopic ellipsometry. Mater Res Soc Symp Proc 862: A.16.3.1

    Google Scholar 

  74. Podraza NJ, Wronski CR, Horn MW, Collins RW (2006) Roughness and phase evolution in Si1-xGex:H: guidance for multijunction photovoltaics. In: Proceedings 4th world conference on photovoltaic solar energy conversion, Waikoloa, HI, p 1657

    Google Scholar 

  75. Podraza NJ, Wronski CR, Collins RW (2006) Deposition phase diagrams for Si1-xGex:H from real time spectroscopic ellipsometry. J Non-Cryst Solids 352:1263

    Article  Google Scholar 

  76. Stoke JA, Dahal LR, Li J, Podraza NJ, Cao X, Deng X, Collins RW (2008) Optimization of Si:H multijunction n-i-p solar cells through the development of deposition phase diagrams. In: Proceedings of the 33rd photovoltaics specialists conference, San Diego, CA, p 762

    Google Scholar 

  77. Stoke JA, Podraza NJ, Li J, Cao X, Deng X, Collins RW (2008) Advanced deposition phase diagrams for guiding Si:H-based multijunction solar cells. J Non-Cryst Solids 354:2435

    Article  Google Scholar 

  78. Acco S, Williamson DL, Stolk PA, Saris FW, van den Boogaard MJ, Sinke WC, van der Weg WF, Roorda S, Zalm PC (1996) Hydrogen solubility and network stability in amorphous silicon. Phys Rev B 53:4415

    Article  Google Scholar 

  79. Baum J, Gleason KK, Pines A, Garroway AN, Reimer JA (1986) Multiple-quantum NMR study of clustering in hydrogenated amorphous silicon. Phys Rev Lett 56:1377

    Article  Google Scholar 

  80. Carlos WE, Taylor PC (1980) Hydrogen-associated disorder modes in amorphous Si:H films. Phys Rev Lett 45:358

    Article  Google Scholar 

  81. Fejfar A, Poruba A, Vaněček M, Kočka J (1996) Precise measurement of the deep defects and surface states in a-Si:H films by absolute CPM. J Non-Cryst Solids 198–200:304

    Article  Google Scholar 

  82. Beyer W, Abo Ghazala MS (1998) Absorption strengths of Si-H vibrational modes in hydrogenated silicon. Mater Res Soc Symp Proc 507:601

    Article  Google Scholar 

  83. Langford AA, Fleet MI, Nelson BP, Lanford WA, Maley N (1992) Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B 45:13367

    Article  Google Scholar 

  84. Fang CJ, Gruntz CJ, Ley L, Cardona M (1980) The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution, and nuclear reaction techniques. J Non-Cryst Solids 35–36:255

    Article  Google Scholar 

  85. Smets AHM, Kessels WMM, van de Sanden MCM (2003) Vacancies and voids in hydrogenated amorphous silicon. Appl Phys Lett 82:1547

    Article  Google Scholar 

  86. Smets AHM, van de Sanden MCM (2007) Relation of the Si-H stretching frequency to the nanostructural Si-H bulk environment. Phys Rev B 76:073202

    Article  Google Scholar 

  87. Smets AHM, Wronski CR, van de Sanden MCM (2010) Hydrogen incorporation in hydrogenated amorphous silicon. To be published in Sol Energ Mat Sol

    Google Scholar 

  88. Stephen JT, Rutland JM, Han D, Wu Y (1997) An NMR investigation of H cluster configurations in a-Si:H. Mater Res Soc Symp Proc 467:159

    Article  Google Scholar 

  89. Bhide VG, Dusane RO, Rajarshi SV, Shaligram AD, David SK (1987) Positron-lifetime studies of hydrogenated amorphous silicon. J Appl Phys 62:108

    Article  Google Scholar 

  90. Suzuki R, Kobayashi Y, Mikado T, Matsuda A, McElheny PJ, Mashima S, Ohgaki H, Chiwaki M, Yamazaki T, Tomimasu T (1991) Characterization of hydrogenated amorphous silicon films by a pulsed positron beam. Jpn J Appl Phys 30:2438

    Article  Google Scholar 

  91. Gordo PM, Ferreira Marques MF, Lopes Gil C, de Lima AP, Lavareda G, Nunes de Carvalho C, Amaral A, Kajcsos Z (2007) Positron annihilation and constant photocurrent method measurements on a-Si:H films: a comparative approach to defect identification. Radiat Phys Chem 76:220

    Article  Google Scholar 

  92. Remeš Z, Vaněček M, Mahan AH, Crandall RS (1997) Silicon network relaxation in amorphous hydrogenated silicon. Phys Rev B 56:12710

    Article  Google Scholar 

  93. Remeš Z, Vaněček M, Torres P, Kroll U, Mahan AH, Crandall RS (1998) Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents. J Non-Cryst Solids 227–230:876

    Article  Google Scholar 

  94. Smets AHM, Wronski CR, Zeman M, van de Sanden MCM (2010) The Staebler-Wronski effect: new physical approaches and insights as a route to reveal its origin. Mater Res Soc Symp Proc 1245:A.14.02

    Google Scholar 

  95. Feltrin A, Strahm B, Bugnon G, Sculati-Meillaud F, Ballif C, Howling AA, Hollenstein C (2010) Input silane concentration effect on the a-Si:H to μc-Si:H transition width. Sol Energ Mat Sol C 94:432–435

    Article  Google Scholar 

  96. Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H (1998) Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos Mag A 77:1447–1460

    Article  Google Scholar 

  97. Droz C (2003) Thin film microcrystalline silicon layers and solar cells: microstructure and electrical performances. PhD Thesis, University of Neuchâtel

    Google Scholar 

  98. Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Niquille X, Shah A (2003) Electrical and microstructural characterisation of microcrystalline silicon layers and solar cells. In: Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, pp 1544–1547

    Google Scholar 

  99. Vallat-Sauvain E, Kroll U, Meier J, Wyrsch N, Shah A (2000) Microstructure and surface and roughness of microcrystalline silicon prepared by VHF-GD using hydrogen dilution. J Non-Cryst Solids 266–269:125–130

    Article  Google Scholar 

  100. Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A (2002) Influence of substrate on the microstructure of microcrystalline silicon layers and cells. J Non-Cryst Solids 299–302:1219–1223

    Article  Google Scholar 

  101. Vallat-Sauvain E, Shah A, Bailat J (2006) Advances in microcrystalline silicon solar cell technologies. Wiley series in materials for electronic and optoelectronic applications, John Wiley & Sons, Ltd, Chichester, pp 133–165

    Google Scholar 

  102. Tsai CC, Anderson GB, Thompson R, Wacker B (1989) Control of silicon network structure in plasma deposition. J Non-Cryst Solids 114:151–153

    Article  Google Scholar 

  103. Nakamura K, Yoshida K, Takeoka S, Shimizu I (1995) Roles of atomic hydrogen in chemical annealing. Jpn J Appl Phys 34:442–449

    Article  Google Scholar 

  104. Matsuda A (2004) Microcrystalline silicon growth and device application. J Non-Cryst Solids 338:1–12

    Article  Google Scholar 

  105. Collins RW, Vedam K (1995) Optical properties of solids. In: Trigg GL (ed) Encyclopedia of applied physics. VCH Publishers, New York, pp 285–336

    Google Scholar 

  106. Luft W (1988) Characteristics of hydrogenated amorphous silicon-germanium alloys. In: Proceedings of 20th IEEE photovoltaic specialists conference, Las Vegas, NV, p 218

    Google Scholar 

  107. Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Sol 15:627

    Article  Google Scholar 

  108. Cody GD, Tiedje T, Brooks BG, Goldstein Y (1982) Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys Rev Lett 47:1480

    Article  Google Scholar 

  109. Wronski CR, Lee S, Hicks M, Kumar S (1989) Internal photoemission of holes and the mobility gap of hydrogenated amorphous silicon. Phys Rev Lett 63:1420

    Article  Google Scholar 

  110. Roxlo CB, Abeles B, Wronski CR, Cody GD, Tiedje T (1983) Comment on optical absorption edge in a-Si:H. Solid State Commun 47:985

    Article  Google Scholar 

  111. Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 207–238

    Google Scholar 

  112. Jackson WB, Biegelsen DK, Nemanich RJ, Kinghts JC (1983) Optical absorption spectra of surface or interface states in hydrogenated amorphous silicon. Appl Phys Lett 42:105

    Article  Google Scholar 

  113. Wyrsch N, Finger F, McMahon TJ, Vaněček M (1991) How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H. J Non-Cryst Solids 137&138:347–351

    Article  Google Scholar 

  114. Lu Y, Kim S, Gunes M, Wronski CR, Collins RW (1994) Process-property relationships for a-Si1-xCx:H deposition: excursions in parameter space guided by real time spectroellipsometry. Mater Res Soc Symp Proc 336:595

    Article  Google Scholar 

  115. Ganguly G, Matsuda A (1996) Role of hydrogen dilution in improvement of a-SiGe:H alloys. J Non-Cryst Solids 198–200:559

    Article  Google Scholar 

  116. Guha S, Yang J, Pawliklewicz T, Glatfelter T, Ross R, Ovshinsky SR (1989) Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells. Appl Phys Lett 54:2330

    Article  Google Scholar 

  117. Vaněček M, Kočka J, Poruba A, Fejfar A (1995) Direct measurement of the deep defect density in thin amorphous silicon films with the “absolute” constant photocurrent method. J Appl Phys 78:360566

    Article  Google Scholar 

  118. Poruba A, Fejfar A, Remeš Z, Špringer J, Vaněček M, Kočka J, Meier J, Torres P, Shah A (2000) Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J Appl Phys 88:148–160

    Article  Google Scholar 

  119. Poruba A, Vaněček M, Meier J, Shah A (2002) Fourier transform infrared photocurrent spectroscopy in microcrystalline silicon. J Non-Cryst Solids 299–302:536–540

    Article  Google Scholar 

  120. Vaněček M, Poruba A, Remeš Z, Rosa J, Kamba S, Vorlíček V, Meier J, Shah A (2000) Electron spin resonance and optical characterization of defects in microcrystalline silicon. J Non-Cryst Solids 266–269:519–523

    Article  Google Scholar 

  121. Wyrsch N, Torres P, Goerlitzer M, Vallat E, Kroll U, Shah A, Poruba A, Vaněček M (1999) Hydrogenated microcrystalline silicon for photovoltaic applications. Solid State Phenom 67–68:89–100, Polycrystalline semiconductors V – bulk materials thin films, and devices

    Article  Google Scholar 

  122. Tanaka K, Matsuda A (1987) Glow-discharge amorphous silicon: growth process and structure. Mater Sci Rep 2:139

    Article  Google Scholar 

  123. Collins RW, Fujiwara H (1997) Growth of hydrogenated amorphous and its alloys. Curr Opin Solid State Mater Sci 2:417–424

    Article  Google Scholar 

  124. Street RA, Winer K (1989) Defect equilibrium in undoped a-Si:H. Phys Rev B 40:6236

    Article  Google Scholar 

  125. Dersch H, Stuke J, Beichler J (1981) Light-induced dangling bonds in hydrogenated amorphous silicon. Appl Phys Lett 38:456

    Article  Google Scholar 

  126. Kamei T, Hata N, Matsuda A, Uchiyama T, Amano S, Tsukamoto K, Yoshioa Y, Hirao T (1996) Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon. Appl Phys Lett 68:2380

    Article  Google Scholar 

  127. Taylor C (1984) Magnetic resonance in a-Si:H. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 99–154

    Google Scholar 

  128. Niu X (2006) Nature and evolution of light induced defects in hydrogenated amorphous silicon. PhD Thesis, Pennsylvania State University

    Google Scholar 

  129. Siebke S, Stiebig H, Abo-Arais A, Wagner H (1994) Charged and neutral dangling defect states in a-Si:H determined from improved analysis of constant photocurrent method. In: Proceedings of the 1st world conference on photovoltaic energy conversion, Waikoloa, HI, p 543

    Google Scholar 

  130. Günes M, Wronski CR (1997) Differences in the densities of charged defect states and the kinetics of Staebler-Wronski effect in undoped hydrogenated amorphous silicon thin films. J Appl Phys 81:3526

    Article  Google Scholar 

  131. Wyrsch N, Beck N, Pipoz P, Goerlitzer M, Beck H, Shah A (1995) Recent progress in the interpretation of a-Si:H transport properties: lifetimes mobilities and mobility-lifetime products. Solid State Phenom 44–46:525–534

    Article  Google Scholar 

  132. Beck N, Wyrsch N, Hof C, Shah A (1996) Mobility lifetime product – a tool for correlating a-Si:H film properties and solar cell performances. J Appl Phys 79:9361–9368

    Article  Google Scholar 

  133. Schumm G, Bauer GH (1991) Equilibrium and non-equilibrium gap state distribution in undoped a-Si:H. Philos Mag B 64:515

    Article  Google Scholar 

  134. Branz HM, Silver M (1990) Potential fluctuation due to inhomogeneity in hydrogenated amorphous silicon and the resulting charged dangling bond defects. Phys Rev B 42:7420

    Article  Google Scholar 

  135. Powell MJ, Dean DC (1993) Improved defect-pool model for charged defects in amorphous silicon. Phys Rev B 48:10815

    Article  Google Scholar 

  136. Shockley W, Read WT (1952) Statistics of the recombination of holes and electrons. Phys Rev 87:835

    Article  MATH  Google Scholar 

  137. Deng J, Ross B, Albert M, Collins RW, Wronski CR (2006) Evolution of metastable defects in intrinsic layers of a-Si:H solar cells and corresponding thin film materials characterized by carrier recombination through midgap states. In: Proceedings of the 4th world conference on photovoltaic solar energy conversion, Waikoloa, HI, p 1576

    Google Scholar 

  138. Rose A (1962) Concepts in photoconductivity and allied problems. Interscience, New York

    Google Scholar 

  139. Nadazdy V, Zeman M (2004) Origin of charged gap states in a-Si:H and their evolution during light soaking. Phys Rev B 69:165213

    Article  Google Scholar 

  140. Zhong F, Cohen JD (1993) Measured and calculated distributions of deep defect states in hydrogenated amorphous silicon: verification of deep defect relaxation dynamics. Phys Rev Lett 71:597

    Article  Google Scholar 

  141. Finger F, Müller J, Malten C, Wagner H (1998) Electronic states in hydrogenated microcrystalline silicon. Philos Mag A 77:805–830

    Article  Google Scholar 

  142. Astakhov O, Carius R, Finger F, Petrusenko Y, Borysenko V, Barankov D (2009) Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon. Phys Rev B 79:104205

    Article  Google Scholar 

  143. Vetterl O, Groß A, Jana T, Ray S, Lambertz A, Carius R, Finger F (2002) Changes in electric and optical properties of intrinsic microcrystalline silicon upon variation of the structural composition. J Non-Cryst Solids 299–302:772–777

    Article  Google Scholar 

  144. Ritter D, Weiser K, Zeldov E (1987) Steady-state photocarrier grating technique for diffusion length measurement in semiconductors: theory and experimental results for amorphous silicon and semi-insulating GaAs. J Appl Phys 62:4563–4570

    Article  Google Scholar 

  145. Kroll U, Meier J, Keppner H, Littlewood SD, Kelly IE, Giannoulès P, Shah A (1995) Origin and incorporation mechanism for oxygen contaminants in a-Si:H and μc-Si:H films prepared by the very high frequency (70 MHz) glow discharge technique. Mater Res Soc Symp Proc 377:39–44

    Article  Google Scholar 

  146. Goerlitzer M, Torres P, Beck N, Wyrsch N, Keppner H, Pohl J, Shah A (1998) Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique. J Non-Cryst Solids 227–230:996–1000

    Article  Google Scholar 

  147. Švrček V, Pelant I, Kočka J, Fojtík P, Rezek B, Stuchlíkova H, Fejfar A, Stuchlík J, Poruba A, Toušek J (2001) Transport anisotropy in microcrystalline silicon studied by measurement of ambipolar diffusion length. J Appl Phys 89:1800–1805

    Article  Google Scholar 

  148. Wyrsch N, Droz C, Feitknecht L, Goerlitzer M, Kroll U, Meier J, Torres P, Vallat-Sauvain E, Shah A, Vaněček M (2000) Hydrogenated microcrystalline silicon: from material to solar cells. Mater Res Soc Symp Proc 609:A15.1.1–A15.1.11

    Google Scholar 

  149. Wyrsch N, Droz C, Feitknecht L, Spitznagel J, Shah A (2002) Transport path in hydrogenated microcrystalline silicon. Mater Res Soc Symp Proc 715:363–368

    Google Scholar 

  150. Wyrsch N, Droz C, Feitknecht L, Goerlitzer M, Kroll U, Meier J, Torres P, Vallat-Sauvain E, Shah A, Vaněček M (2000) Hydrogenated microcrystalline silicon: how to correlate layer properties and solar cell performance. J Non-Cryst Solids 266–269:1099–1103

    Article  Google Scholar 

  151. Wyrsch N, Goerlitzer M, Beck N, Meier J, Shah A (1996) Transport properties of compensated μc-Si:H. Mater Res Soc Symp Proc 420:801–806

    Article  Google Scholar 

  152. Dylla T, Reynolds S, Carius R, Finger F (2006) Electron and hole transport in microcrystalline silicon solar cells studied by time-of-flight photocurrent spectroscopy. J Non-Cryst Solids 352:1093–1096

    Article  Google Scholar 

  153. Matsui T, Matsuda A, Kondo M (2004) High efficiency and high-deposition-rate microcrystalline silicon p-i-n solar cells. In: Proceedings of the 19th European photovoltaic solar energy conference, New Orleans, LA, pp 1407–1410

    Google Scholar 

  154. Luft W, Tsuo Y (1993) Hydrogenated amorphous silicon alloy deposition processes. Marcel Dekker, New York

    Google Scholar 

  155. Wronski CR, Abeles B, Tiedje T, Cody GD (1982) Recombination centers in phosphorous doped hydrogenated amorphous silicon. Solid State Commun 44:1423

    Article  Google Scholar 

  156. Lee Y, Ferlauto A, Wronski CR (1997) Contributions of bulk, interface and built-in potential to the open circuit voltage of a-Si solar cells. In: Proceedings of the 26th IEEE photovoltaic specialists conference, Anaheim, CA, p 683

    Google Scholar 

  157. Wronski CR (1984) The Staebler-Wronski effect. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 347–373

    Google Scholar 

  158. Fritzsche H (1997) Search for explaining the Staebler-Wronski effect. Mater Res Soc Symp Proc 467:19

    Article  Google Scholar 

  159. Wronski CR (1997) The light-induced changes in a-Si:H materials and solar cells-where we are now. Mater Res Soc Symp Proc 467:7

    Article  Google Scholar 

  160. Yang L, Chen LF (1994) The effect of H2 dilution on the stability of a-Si:H based solar cells. Mater Res Soc Symp Proc 336:669

    Article  Google Scholar 

  161. Sakata I, Yamanaka M, Namase S, Hayash Y (1992) Deep defect states in hydrogenated amorphous silicon studied by a constant photocurrent method. J Appl Phys 71:4344

    Article  Google Scholar 

  162. Stutzmann M, Jackson WB, Tsai CC (1985) Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys Rev B 32:23

    Article  Google Scholar 

  163. Stradins P, Fritzsche H (1994) Photo-induced creation of metastable defects in a-Si:H at low temperature and their effect on photoconductivity. Philos Mag B 69:121

    Article  Google Scholar 

  164. Lee Y, Jiao L, Liu H, Lu Z, Collins RW, Wronski CR (1996) Stability of a-Si solar cells and corresponding intrinsic materials fabricated using hydrogen diluted silane. In: Proceedings of the 25th IEEE photovoltaic specialists conference, Washington, DC, p 1165

    Google Scholar 

  165. Young L, Chen L, Catalano A (1991) Intensity and temperature dependence of photodegradation of amorphous silicon solar cells under intense illumination. Appl Phys Lett 59:840

    Article  Google Scholar 

  166. Yang L, Chen L (1993) Fast and slow metastable defects in hydrogenated amorphous silicon. Appl Phys Lett 63:400

    Article  Google Scholar 

  167. Albert A, Deng JD, Pearce JM, Niu X, Collins RW, Wronski CR (2005) The creation and annealing kinetics of fast light induced defect states created by 1 sun illumination in a-Si:H. Mater Res Soc Symp Proc 862:457

    Article  Google Scholar 

  168. Jiao L, Liu H, Semoushikina S, Lee Y, Wronski CR (1996) Initial, rapid light induced changes in hydrogenated amorphous silicon materials and solar cell structures: the effect of charged defects. Appl Phys Lett 69:3713

    Article  Google Scholar 

  169. Wronski C, Deng J, Niu X, Smets A (2010) Dependence of carrier recombination in protocrystalline a-Si:H films and cells on their different light induced gap states. In: Proceedings of the 35th IEEE photovoltaic specialists conference, Honolulu, HI, pp 146–151

    Google Scholar 

  170. Deng JD, Ross B, Albert M, Collins RW, Wronski CR (2006) Characterization of the evolution in metastable defects created by recombination of carriers generated by photo-generation and injection in p-i-n a-Si:H solar cells. Mater Res Soc Symp Proc 910:A02–02

    Google Scholar 

  171. Branz HM (2003) Hydrogen collision model of metastablity after 5 years: experimental tests and theoretical extensions. Sol Energ Mat Sol C 78:425

    Article  Google Scholar 

  172. Meier J, Torres P, Platz R, Dubail S, Kroll U, Anna Selvan JA, Pellaton-Vaucher N, Hof C, Fischer D, Keppner H, ShahA UK-D, Giannoulès P, Köhler J (1996) On the way towards high-efficiency thin film silicon solar cells by the 'micromorph' concept. Mater Res Soc Symp Proc 420:3–14

    Article  Google Scholar 

  173. Meillaud F, Vallat-Sauvain E, Niquille X, Dubey M, Bailat J, Shah A, Ballif C (2005) Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells. In: Proceedings of the 31st IEEE photovoltaic specialist conference, Lake Buena Vista, FL, pp 1412–1415

    Google Scholar 

  174. Meillaud F, Feltrin A, Dominé D, Buehlmann M, Python P, Bugnon G, Billet A, Parascandolo G, Bailat J, Faÿ S, Wyrsch N, Ballif C, Shah A (2009) Limiting factors in the fabrication of microcrystalline silicon solar cells and microcrystalline/amorphous (‘micromorph’) tandems. Philos Mag 89:2599–2621

    Article  Google Scholar 

  175. Deng X, Schiff EA (2007) Amorphous silicon–based solar cells, Chapter 12. In: Hegedus S, Luque A (eds) Handbook of photovoltaic science and engineering. Wiley, Somersat

    Google Scholar 

  176. Pearce JM, Podraza N, Collins RW, Al-Jassim MM, Jones KM, Deng J, Wronski CR (2007) Optimization of open-circuit voltage in amorphous silicon solar cells with mixed phase amorphous-nanocrystalline p-contacts. J Appl Phys 101:114301

    Article  Google Scholar 

  177. Zhu H, Fonash SJ (1998) Computer simulation for solar cell applications: understanding and design. Mater Res Soc Symp Proc 507:395

    Article  Google Scholar 

  178. Deng J, Wronski CR (2005) Carrier recombination and differential diode quality factors in the dark forward bias current–voltage characteristics of a-Si:H solar cells. J Appl Phys 98:24509

    Article  Google Scholar 

  179. Hegedus S, Salzman N, Fagen E (1998) The relation of dark and illuminated diode parameters to the open-circuit voltage of amorphous silicon p-i-n solar cells. J Appl Phys 63:5126

    Article  Google Scholar 

  180. Crandall RS, Branz HM (1990) Band bending due to charged dangling bonds in amorphous silicon p-i-n solar cells. In: Proceedings of 21th IEEE photovoltaic specialists conference, Kissimmee, FL, p 1630

    Google Scholar 

  181. Hovel HJ (1976) Solar cells semiconductors and semimetals, vol II, 1st edn. Academic Press, New York

    Google Scholar 

  182. Benagli S, Borrello D, Vallat-Sauvain E, Meier J, Kroll U, Hoetzel J, Bailat J, Steinhauser J, Marmelo M, Monteduro G, Castens L (2009) In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2293–2298

    Google Scholar 

  183. Yamamoto Y, Nomoto K, Okuno T, Moriuchi S, Nakata Y, Inoguchi T (1987) A role of composition graded layer in p/i interface of amorphous silicon solar cell. In: Proceedings of the 19th IEEE photovoltaic specialists conference, New Orleans, LA, p 981

    Google Scholar 

  184. Sakai H, Yoshida T, Fujikake S, Hama T, Ichikawa Y (1980) Effect of p/i interface layer on dark J-V characteristics and Voc in p-i-n a-Si solar cells. J Appl Phys 67:2494

    Google Scholar 

  185. von Roedern B (1994) Innovative optimization procedures for solar cells based on a unique model for junction optimization. In: Proceedings of 12th European photovoltaic solar energy conference, Amsterdam, The Netherlands, p 1354

    Google Scholar 

  186. Lee Y, Ferlauto A, Wronski CR (1997) Contributions of bulk, interface and built-in potential to the open circuit voltage of a-Si:H solar cells. In: Proceedings of the 26th IEEE photovoltaic specialists conference, p 683

    Google Scholar 

  187. Pearce JM, Koval RJ, Ferlauto AS, Collins RW, Wronski CR, Yang J, Guha S (2000) Dependence of open-circuit voltage in hydrogenated protocrystalline silicon solar cells on carrier recombination in p/i interface and bulk regions. Appl Phys Lett 77:3093

    Article  Google Scholar 

  188. Koh J, Lee Y, Fujiwara H, Wronski CR, Collins RW (1998) Optimization of hydrogenated amorphous silicon p-i-n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry. Appl Phys Lett 73:1526

    Article  Google Scholar 

  189. Guha S, Yang J, Nath P, Hack M (1986) Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells. Appl Phys Lett 49:218

    Article  Google Scholar 

  190. Banerjee A (1995) Study of top contact/p-layer junction for the optimization of large-area amorphous silicon multijunction cells. Sol Energ Mat Sol C 36:295

    Article  Google Scholar 

  191. Deng X, Jones SJ, Liu T, Izu M, Ovshinsky SR, Hoffman K (1997) VHF plasma deposition of mc-Si p-layer materials. Mater Res Soc Symp Proc 467:795

    Article  Google Scholar 

  192. Vetterl O, Lambertz A, Dasgupta A, Finger F, Rech B, Kluth O, Wagner H (2001) Thickness dependence of microcrystalline silicon solar cell properties. Sol Energ Mat Sol C 66:345–351

    Article  Google Scholar 

  193. Wyrsch N, Torres P, Meier J, Shah A (1998) Microcrystalline p-i-n cells: a drift controlled device? J Non-Cryst Solids 227–230:1272–1276

    Article  Google Scholar 

  194. Bailat J, Vallat-Sauvain E, Dubey M, Meillaud F, Niquille X, Guillet J, Shah A, Poruba A, Mullerova L, Springer J, Vaněček M (2004) Active layer quality and open-circuit voltage of nip and pin microcrystalline solar cells. In: Proceedings of the 19th European photovoltaic solar energy conference, Paris, France, pp 1541–1544

    Google Scholar 

  195. Meillaud F, Vallat-Sauvain E, Niquille X, Dominé D, Shah A, Ballif C (2006) Annealing behaviour and nature of defects of light-soaked microcrystalline silicon solar cells. In: Proceedings of the 21st European photovoltaic solar energy conference, Dresden, Germany, pp 1729–1732

    Google Scholar 

  196. Zeman M, Isabella O, Jaeger K, Santbergen R, Liang R, Solntsev S, Krc J (2010) Advanced light trapping in thin-film silicon solar cells. Mater Res Soc Symp Proc 1245:A03–03

    Article  Google Scholar 

  197. Faÿ S, Feitknecht L, Schlüchter R, Kroll U, Vallat-Sauvain E, Shah A (2006) Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Sol Energ Mat Sol C 90:2960–2967

    Article  Google Scholar 

  198. Kluth O, Rech B, Houben L, Wieder S, Schöpe G, Beneking C, Wagner H, Löffl A, Schock HW (1999) Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 351:247–253

    Article  Google Scholar 

  199. Battaglia C, Söderström K, Escarré J, Haug F-H, Dominé D, Cuony P, Boccard M, Bugnon G, Denizot C, Despeisse M, Feltrin A, Ballif C (2010) Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Appl Phys Lett 96:213504

    Article  Google Scholar 

  200. Deng X, Narasimhan KL (1994) New evaluation technique for thin-film solar cell back reflector using photothermal deflection spectroscopy. In: Proceeding of the 1st world conference on photovoltaic energy conversion, Waikoloa, HI, pp 555–558

    Google Scholar 

  201. Bailat J, Terrazzoni-Daudrix V, Guillet J, Freitas F, Niquille X, Shah A, Ballif C, Scharf T, Morf R, Hansen A, Fischer D, Ziegler Y, Closset A (2005) Recent development of solar cells on low-cost plastic substrates. In: Proceedings of the 20th European photovoltaic solar energy conference, Barcelona, Spain, pp 1529–1532

    Google Scholar 

  202. Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C (2007) Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515:8558–8561

    Article  Google Scholar 

  203. Agashe C, Kluth O, Schöpe G, Siekmann H, Hüpkes J, Rech B (2003) Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films 442:167–172

    Article  Google Scholar 

  204. Dominé D, Haug F-J, Battaglia C, Ballif C (2010) Modeling of light scattering from micro- and nanotextured surfaces. J Appl Phys 107:044504

    Article  Google Scholar 

  205. Berginski M, Hüpkes J, Gordijn A, Reetz W, Wätjen T, Rech B, Wuttig M (2008) Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells. Sol Energ Mat Sol C 92:1037–1042

    Article  Google Scholar 

  206. Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C (2008) Relation between substrate surface morphology and microcrystalline silicon solar cell performance. J Non-Cryst Solids 354:2258–2262

    Article  Google Scholar 

  207. Python M, Madani O, Dominé D, Meillaud F, Vallat-Sauvain E, Ballif C (2009) Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells. Sol Energ Mat Sol C 93:1714–1720

    Article  Google Scholar 

  208. Python M, Dominé D, Söderström T, Meillaud F, Ballif C (2010) Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation. Prog Photovoltaics: Res Appl 18:491–499

    Article  Google Scholar 

  209. Bailat J, Dominé D, Schlüchter R, Steinhauser J, Faÿ S, Freitas F, Bücher C, Feitknecht L, Niquille X, Tscharner R, Shah A, Ballif C (2006) High-efficiency p-i-n microcrystalline and micromorph thin film silicon solar cells deposited on LPCV ZnO coated glass substrates. In: Proceedings of the 4th world conference on photovoltaic energy conversion, Waikoloa, HI, p 1533

    Google Scholar 

  210. Dominé D, Buehlmann P, Bailat J, Billet A, Feltrin A, Ballif C (2008) Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Phys Status Solidi RRL 2:163–165

    Article  Google Scholar 

  211. Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C (2011) Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells. Sol Energ Mat Sol C 95:195–198

    Article  Google Scholar 

  212. Grabitz PO, Rau U, Werner JH (2005) Modeling of spatially inhomogeneous solar cells by a multi-diode approach. Phys Status Solidi A 202:2920–2927

    Article  Google Scholar 

  213. Despeisse M, Bugnon G, Feltrin A, Stueckelberger M, Cuony P, Meillaud F, Billet A, Ballif C (2010) Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Appl Phys Lett 96:073507

    Article  Google Scholar 

  214. Despeisse M, Boccard M, Bugnon G, Cuony P, Söderström T, Parascandolo G, Stuckelberger M, Charrière M, Lofgren L, Battaglia C, Hänni S, Billet A, Ding L, Nicolay S, Meillaud F, Wyrsch N, Ballif C (2010) Low-conductivity doped layers for improved performance of thin film silicon solar cells on highly textured substrates. In: Proceedings of the 25th European photovoltaic solar energy conference, Valencia, Spain, pp 2793–2797

    Google Scholar 

  215. Despeisse M, Battaglia C, Boccard M, Bugnon G, Charrière M, Cuony P, Hänni S, Löfgren L, Meillaud F, Parascandolo G, Söderström T, Ballif C (2011) Optimization of thin film silicon solar cells on highly textured substrates. Phys Status Solidi A 208:1863–1868

    Article  Google Scholar 

  216. Delli Veneri P, Mercaldo LV, Usatii I (2010) Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Appl Phys Lett 97:023512

    Article  Google Scholar 

  217. Lipovšek B, Krč J, Isabella O, Zeman M, Topič M (2010) Analysis of thin-film silicon solar cells with white paint back reflectors. Phys Status Solidi C7:1041–1044

    Google Scholar 

  218. Yamamoto K, Toshimi M, Suzuki T, Tawada Y, Okamoto T, Nakajima A (1998) Thin film poly-Si solar cell on glass substrate fabricated at low temperature. Mater Res Soc Symp Proc 507:131–138

    Article  Google Scholar 

  219. Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F (2006) Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J Non-Cryst Solids 352:1859–1862

    Article  Google Scholar 

  220. Ballif C, Barraud L, Battaglia C, Benkhaira M, Billet A, Biron R, Boccard M, Bugnon G, Charrière M, Cuony P, Despeisse M, Ding L, Escarré J, Haug F-H, Hänni S, Löfgren L, Meillaud F, Nicolay S, Pahud C, Parascandolo G, Perruche B, De Wolf S, Söderström K, Stückelberger M (2011) Novel materials and superstrates for high-efficiency micromorph solar cells. In: Proceedings of the 26th European photovoltaic solar energy conference, pp 2384–2391

    Google Scholar 

  221. Ichikawa Y, Fujikake S, Takayama T, Saito S, Ota H, Yoshida T, Ihara T, Sakai H (1993) Large-area amorphous silicon solar cells with high stabilized efficiency and their fabrication technology. In: Proceedings of the 23rd IEEE photovoltaic specialists conference, Louisville, KY, pp 27–33

    Google Scholar 

  222. Yang J, Guha S (1992) Double-junction amorphous silicon-based solar cells with 11% stable efficiency. Appl Phys Lett 61:2917–2919

    Article  Google Scholar 

  223. Guha S, Yang J, Pawliklewicz T, Glatfelter T, Ross R, Ovshinsky SR (1989) Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells. Appl Phys Lett 54:2330–2332

    Article  Google Scholar 

  224. Yang J, Banerjee A, Lord K, Guha S (1998) Correlation of component cells with high efficiency amorphous silicon alloy triple-junction solar cells and modules. In: Proceedings of the 2nd world conference on photovoltaic energy conference, Vienna, Austria, pp 387–390

    Google Scholar 

  225. Fischer D, Dubail S, Anna Selvan JA, Pellaton Vaucher N, Platz R, Hof C, Kroll U, Meier J, Torres P, Keppner H, Wyrsch N, Goetz M, Shah A, Ufert KD (1996) The micromorph solar cell: extending a-Si:H technology towards thin film crystalline silicon. In: Proceedings of the 25th IEEE photovoltaic specialists conference, Washington, DC, pp 1053–1056

    Google Scholar 

  226. Dominé D, Bailat J, Steinhauser J, Shah A, Ballif C (2006) Micromorph solar cell optimization using a ZnO layer as intermediate reflector. In: Proceedings of the 4th world conference on photovoltaic energy conference, Waikoloa, HI, pp 1465–1468

    Google Scholar 

  227. Myong SY, Sriprapha K, Miyajima S, Konagai M (2007) High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer. Appl Phys Lett 90:263509

    Article  Google Scholar 

  228. Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y (2005) A thin-film silicon solar cell and module. Prog Photovoltaics 13:489–494

    Article  Google Scholar 

  229. Lambertz A, Dasgupta A, Reetz W, Gordijn A, Carius R, Finger F (2007) Microcrystalline silicon oxide as intermediate reflector for thin film silicon solar cells. In: Proceedings of the 22nd European photovoltaic solar energy conference, Milano, Italy, pp 1839–1842

    Google Scholar 

  230. Buehlmann P, Bailat J, Dominé D, Billet A, Meillaud F, Feltrin A, Ballif C (2007) In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. Appl Phys Lett 91:143505

    Article  Google Scholar 

  231. Feltrin A, Buehlmann P, Dominé D, Despeisse M, Meillaud F, Bugnon G, Parascandolo G, Ballif C (2009) Latest developments on micromorph tandem cells at IMT. In: Technical digest of the 18th international photovoltaic science and engineering conference, Kolkata, India, pp 209–210

    Google Scholar 

  232. Meier J, Bailat J, Castens L, Benagli S, Kroll U, Hötzel J, Borrello D, Djeridane Y, Steinhauser J, Vallat-Sauvain E, Orhan J-B, Ufert K, Henz J (2009) High efficiency micromorph tandem developments in KAI-M PECVD reactors. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2398–2401

    Google Scholar 

  233. Rech B, Repmann T, Wieder S, Ruske M, Stephan U (2006) A new concept for mass production of large area thin-film silicon solar cells on glass. Thin Solid Films 502:300–30

    Article  Google Scholar 

  234. Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar cell efficiency tables (version 37). Prog Photovoltaics: Res Appl 19:84–92

    Article  Google Scholar 

  235. Bailat J, Fesquet L, Orhan J-B, Djeridane Y, Wolf B, Madliger P, Steinhauser J, Benagli S, Borrello D, Castens L, Monteduro G, Marmelo M, Dehbozorghi B, Vallat-Sauvain E, Multone X, Romang D, Boucher J-F, Meier J, Kroll U, Despeisse M, Bugnon G, Ballif C, Marjanovic S, Kohnke G, Borrelli N, Koch K, Liu J, Modavis R, Thelen D, Vallon S, Zakharian A, Weidman D (2010) Recent developments of high-efficiency micromorph® tandem solar cells in KAI-M PECVD reactors. In: Proceedings of the 25th European photovoltaic solar energy conference, Valencia, Spain, pp 2720–2723

    Google Scholar 

  236. Yan B, Yue G, Xu X, Yang J, Guha S (2008) Correlation of current mismatch and fill factor in amorphous and nanocrystalline silicon based high efficiency multi-junction solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, San Diego, CA, pp 257–262

    Google Scholar 

  237. Yan B, Yue G, Sivec L, Yang J, Guha S (2011) Innovative dual function nc-SiOx:H leayer leading to a >16% efficient multi-junction thin-fil silicon solar cell. Appl Phys Lett 99:113512

    Article  Google Scholar 

  238. Yue G, Sivec L, Yan B, Yang J, Guha S (2010) High efficiency hydrogenated nanocrystalline silicon solar cells deposited at high rates. Mater Res Soc Symp Proc 1245:A21–01

    Article  Google Scholar 

  239. Green MA, Emery K, King DL, Hishikawa Y, Warta W (206) Solar cell efficiency tables (version 28). Prog Photovoltaics: Res Appl 14:455–461

    Google Scholar 

  240. Nakajima A, Ichikawa M, Sawada T, Yoshimi M, Yamamoto K (2004) Optimization of device design for thin-film stacked tandem solar modules in terms of outdoor performance. Jpn J Appl Phys 43:L1162–L1165

    Article  Google Scholar 

  241. Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Miguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y (2005) Thin film silicon solar cell and module. In: Proceedings of the 31st IEEE photovoltaic specialists conference, Lake Buena Vista, FL, pp 1468–1471

    Google Scholar 

  242. Hanak JJ (1979) Monolithic solar cell panel of amorphous silicon. Solar Energy 23:145–147

    Article  Google Scholar 

  243. Brecl K, Topič M, Smole F (2005) A detailed study of monolithic contacts and electrical losses in a large-area thin-film module. Prog Photovoltaics: Res Appl 13:297–310

    Google Scholar 

  244. Frei M, Wang D (2009) Performance and yield calculations for large-area thin-film modules through distributed modeling. In: Proceedings of the 34th IEEE photovoltaic specialists conference, Philadelphia, PA, pp 1708–1712

    Google Scholar 

  245. Söderström T, Haug F-J, Terrazzoni-Daudrix V, Ballif C (2010) Flexible micromorph tandem a-Si/μc-Si:H solar cells. J Appl Phys 107:014507

    Article  Google Scholar 

  246. Koch C, Ito M, Schubert M (2001) Low-temperature deposition of amorphous silicon solar cells. Sol Energ Mat Sol C 68:227–236

    Article  Google Scholar 

  247. Hamers EAG, van den Donker MN, Stannowski B, Schlatmann R, Jongerden GJ (2007) Helianthos: roll-to-roll deposition of flexible solar cell modules. Plasma Process Polymers 4:275–281

    Article  Google Scholar 

  248. Söderström T, Haug F-J, Terrazzoni-Daudrix V, Ballif C (2010) Flexible micromorph tandem a-Si/μc-Si solar cells. J Appl Phys 107:014507

    Article  Google Scholar 

  249. Woodcock JM, Schade H, Maurus H, Dimmler B, Springer J, Ricaud A (1997) A study of the upscalingof thin film solar cell manufacture towards 500 MWP per annum. In: Proceedings of the 14th European photovoltaic solar energy conference, Barcelona, Spain, pp 857–860

    Google Scholar 

  250. Vanecek M, Poruba A, Remes Z, Holovsky J, Purkrt A, Babchenko O, Hruska K, Meier J, Kroll U (2009) Five roads towards increased optical absorption and high stable efficiency for thin film silicon solar cells. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2286–2289

    Google Scholar 

  251. Naughton MJ, Kempa K, Ren ZF, Gao Y, Rybczynski J, Argenti N, Gao W, Wang Y, Peng Y, Naughton JR, McMahon G, Burns MJ, Shepard A, Clary M, Ballif C, Haug F-J, Söderström T, Cubero O, Eminian C (2010) Efficient nanocoax-based solar cells. Phys Status Solidi RRL 4:181–183

    Article  Google Scholar 

  252. Battaglia C, Escarre J, Söderström K, Erni L, Ding L, Bugnon G, Billet A, Boccard M, Barraud L, De Wolf S, Haug F-J, Despeisse M, Ballif C (2011) Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett 11:661–665

    Article  Google Scholar 

  253. Battaglia C, Escarre J, Söderström K, Charrière M, Despeisse M, Haug F-J, Ballif C (2011) Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat Photon 5:535–538

    Article  Google Scholar 

  254. Haase C, Stiebig H (2006) Optical properties of thin-film silicon solar cells with grating couplers. Prog Photovoltaics: Res Appl 14:629–641

    Article  Google Scholar 

  255. Zhou D, Biswas R (2008) Photonic crystal enhanced light-trapping in thin film solar cells. J Appl Phys 103:093102

    Article  Google Scholar 

Books andReviews

  • Hamakawa Y (2004) Thin-film solar cells: next generation photovoltaics and its applications, Springer series in photonics. Springer, Berlin

    Book  Google Scholar 

  • Poortmans J, Arkhipov V (2006) Thin film solar cells: fabrication, characterization and applications, Wiley series in materials for electronic and optoelectronic applications. Wiley, New York

    Book  Google Scholar 

  • Schropp REI, Zeman M (1998) Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology, Electronic materials: science and technology. Springer, Berlin

    Book  Google Scholar 

  • Shah AV (2010) Thin-film silicon solar cells. EPFL Press, Lausanne

    Book  Google Scholar 

  • Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wronski CW, Carlson DE (2001) Amorphous silicon solar cells, clean energy from photovoltaics, vol 1, Series on photoconversion of solar energy. Imperial College Press, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Wronski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Wronski, C.R., Wyrsch, N. (2013). Silicon Solar Cells , Thin-film . In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_462

Download citation

Publish with us

Policies and ethics