Skip to main content

Quasi-Elastic Light Scattering in Ophthalmology

  • Reference work entry
  • First Online:
Handbook of Coherent-Domain Optical Methods
  • 2060 Accesses

Abstract

The eye is not just a “window to the soul”; it can also be a “window to the human body.” The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, New York, 1991)

    Google Scholar 

  2. T. Tanaka, G.B. Benedek, Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Invest. Ophthalmol. Vis. Sci. 14(6), 449–456 (1975)

    Google Scholar 

  3. S.E. Bursell, P.C. Magnante, L.T. Chylack, In vivo uses of quasi-elastic light scattering spectroscopy as a molecular probe in the anterior segment of the eye, in Noninvasive Diagnostic Techniques in Ophthalmology, ed. by B.R. Masters (Springer, New York, 1990), pp. 342–365

    Chapter  Google Scholar 

  4. R.R. Ansari, Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice. J. Biomed. Opt. 9(1), 22–37 (2004)

    Article  ADS  Google Scholar 

  5. D.S. Friedman et al., Vision Problems in the US: Prevalence of Adult Vision and Age-Related Eye Disease in America (National Eye Institute (National Institutes of Health)/Prevent Blindness America, Bethesda/Schaumburg, 2012). http://www.visionproblemsus.org

  6. G.W. Tate, A. Safiz, The slit lamp, history, principle, and practice, in Duane’s Clinical Ophthalmology, ed. by W. Tasman, E.A. Jaeger (J.B. Lippincott, Philadelphia, 1992)

    Google Scholar 

  7. A. Wegener, H. Laser-Junga, Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations – a review. Clin. Experiment. Ophthalmol. 37, 144–154 (2009)

    Article  Google Scholar 

  8. R.H. Stock, W.H. Ray, Interpretation of photon correlation data: a comparison of analysis methods. J. Polym. Sci. A 23, 1393–1447 (1985)

    Google Scholar 

  9. H.S. Dhadwal, R.R. Ansari, M.A. Dellavecchia, Coherent fiber optic sensor for early detection of cataractogenesis in a human eye lens. Opt. Eng. 32(2), 233–238 (1993)

    Article  ADS  Google Scholar 

  10. L. Rovati, F. Fankhauser II, J. Rick, Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye. Rev. Sci. Instrum. 67(7), 2620 (1996)

    Article  ADS  Google Scholar 

  11. R.R. Ansari, K.I. Suh, A. Arabshahi, W.W. Wilson, T.L. Bray, L.J. DeLucas, A fiber optic probe for monitoring protein aggregation, nucleation and crystallization. J. Cryst. Growth 168, 216–226 (1996)

    Article  ADS  Google Scholar 

  12. M.F. Simpanya, R.R. Ansari, K.I. Suh, V.R. Leverenz, F.J. Giblin, Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Invest. Ophthalmol. Vis. Sci. 46(12), 4641–4651 (2005)

    Article  Google Scholar 

  13. J. Sebag, R.R. Ansari, K.I. Suh, Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 576–580 (2007)

    Article  Google Scholar 

  14. M.F. Simpanya, R.R. Ansari, V.R. Leverenz, F.J. Giblin, Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract. Photochem. Photobiol. 84, 1589–1595 (2008)

    Article  Google Scholar 

  15. M.B. Datiles, R.R. Ansari, K.I. Suh, S. Vitale, G.F. Reed, J.S. Zigler, F.L. Ferris, Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch. Ophthalmol. 126(12), 1687–1693 (2008)

    Article  Google Scholar 

  16. L. Pollonini, L. Rovati, R.R. Ansari, Dynamic light scattering and natural fluorescence measurements in healthy and pathological ocular tissues. Proc. SPIE 4611, 213–219 (2002)

    Article  ADS  Google Scholar 

  17. M.B. Datiles III, R.R. Ansari, Clinical evaluation of cataracts, in Duane’s Clinical Ophthalmology, ed. by W. Tasman, E. Jaeger, vol. 73B (Lippincott, Philadelphia, 2003)

    Google Scholar 

  18. C. Kent, Cracking the cataract code, new technology, new hope. Rev. Ophthalmol. XVI(10), 80–87 (2009)

    MathSciNet  Google Scholar 

  19. M.B. Datiles III, R.R. Ansari, G.F. Reed, A clinical study of the human lens with a dynamic light scattering device. Exp. Eye Res. 74(1), 93–102 (2002)

    Article  Google Scholar 

  20. A. Foster, Cataract – a global perspective: output, outcome and outlay. Eye 3, 449–453 (1999)

    Article  Google Scholar 

  21. C. Kupfer, Bowman lecture. The conquest of cataract: a global challenge. Trans. Ophthalmol. Soc. 104(1), 1–10 (1984)

    Google Scholar 

  22. J.J. Harding, Drugs. Aging 18(7), 473–486 (2001)

    Article  Google Scholar 

  23. G.B. Benedek, J. Pande, G.M. Thurston, J.L. Clark, Theoretical and experimental basis for the inhibition of cataract. Prog. Retin. Eye Res. 18, 391–402 (1999)

    Article  Google Scholar 

  24. G.M. Thurston, D.L. Hayden, P. Burrows, J.I. Clark, V.G. Taret, J. Kandel, M. Courogen, J.A. Peetermans, M.S. Bowen, D. Miller, K.M. Sullivan, R. Storb, H. Stern, G.B. Benedek, Quasielastic light scattering study of the living human lens as a function of age. Curr. Eye Res. 16(3), 197–207 (1997)

    Article  Google Scholar 

  25. H. Dhadwal, J. Wittpen, In vivo dynamic light scattering characterization of the human lens: cataract index. Curr. Eye Res. 20(6), 502–510 (2000)

    Article  Google Scholar 

  26. R.R. Ansari, J.F. King, T. Seeberger, J.I. Clark, Early detection of cataract and response to pantethine therapy with non-invasive static and dynamic light scattering. Proc. SPIE 4951, Ophthalmic Technologies XIII, 168 (2003)

    Google Scholar 

  27. J.I. Clark, J.C. Livesey, J.E. Steele, Delay or inhibition of rat lens opacification using pantethine and WR-77913. Exp. Eye Res. 62, 75–85 (1996)

    Article  Google Scholar 

  28. F.A. Bettelheim, R.R. Ansari, Q. Cheng, J.S. Zigler, The mode of chaperoning of dithiothreitol-denatured α lactalbumin by α crystallin. Biochem. Biophys. Res. Commun. 261, 292–297 (1999)

    Article  Google Scholar 

  29. J.S. Zigler, P. Russel, S. Tumminia, C. Qin, C.M. Krishna, Hydroxylamine compositions for the prevention or retardation of cataracts, U. S. Patent 6,001,853, 14 December 1999

    Google Scholar 

  30. J.S. Zigler, C. Qin, T. Kamiya, M.C. Krishna, Q. Cheng, S. Tumminia, P. Russell, Tempol-H inhibits opacification of lenses in organ culture. Free Radic. Biol. Med. 35, 1194–1202 (2003)

    Article  Google Scholar 

  31. V.M. Chenault, M.N. Ediger, R.R. Ansari, In vivo assessment of diabetic lenses using dynamic light scattering. Diabetes Technol. Ther. 4(5), 651–659 (2002)

    Article  Google Scholar 

  32. R.R. Ansari, K.I. Suh, S. Dunker, N. Kitaya, J. Sebag, Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering. Exp. Eye Res. 73, 859–866 (2001)

    Article  Google Scholar 

  33. L. Rovati, F. Fankhauser II, F. Docchio, J. Van Best, Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence. J. Biomed. Opt. 3(3), 357–363 (1998)

    Article  ADS  Google Scholar 

  34. R. Klein, B.E.K. Klein, S.E. Moss, Visual impairment in diabetes. Ophthalmology 91, 1–9 (1984)

    Google Scholar 

  35. M. Brownlee, The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy, in Complications of Diabetes Mellitus, ed. by B. Drazin, S. Melmed, D. LeRioth (Alan R. Liss, New York, 1989), pp. 9–17

    Google Scholar 

  36. J. Sebag, Abnormalities of human vitreous structure in diabetes. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 257–260 (1993)

    Article  Google Scholar 

  37. J. Sebag, Diabetic vitreopathy [guest editorial]. Ophthalmology 103, 205–206 (1996)

    Google Scholar 

  38. J. Sebag, The Vitreous – Structure, Function, and Pathobiology (Springer, New York, 1989)

    Google Scholar 

  39. J. Sebag, Age-related changes in human vitreous structure. Graefe’s Arch. Clin. Exp. Ophthalmol. 225, 89–93 (1987)

    Article  Google Scholar 

  40. J. Sebag, R.R. Ansari, S. Dunker, S.I. Suh, Dynamic light scattering of diabetic vitreopathy. Diabetes Technol. Ther. 1, 169–176 (1999)

    Article  Google Scholar 

  41. J. Aguayo, B. Glaser, A. Mildvan, H.M. Cheng, R.G. Gonzalez, T. Brady, Study of the vitreous liquefaction by NMR spectroscopy and imaging. Invest. Ophthalmol. Vis. Sci. 26, 692–697 (1985)

    Google Scholar 

  42. C.W. Oyster, The Human Eye Structure and Function (Sinauer, Sunderland, 1999)

    Google Scholar 

  43. S.D. McLeod, Beyond Snellen acuity: the assessment of visual function after refractive surgery. Arch. Ophthalmol. 119, 1371–1373 (2001)

    Article  Google Scholar 

  44. L.B. Sabbagh, Dynamic light scattering focuses on the cornea. Rev. Ref. Surg. 5, 28–31 (2002)

    Google Scholar 

  45. R.R. Ansari, A.K. Misra, A.B. Leung, J.F. King, M.B. Datiles III, Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering. Proc. SPIE 4611, 220–229 (2002)

    Article  ADS  Google Scholar 

  46. R. Dahm, Dying to See. Sci. Am., 83–89 (October 2004)

    Google Scholar 

  47. P.H. Frederikse, D. Garland, J.S. Zigler, J. Piatigorsky, Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (A beta) in mammalian lenses, and A beta has toxic effects on lens epithelial cells. J. Biol. Chem. 271(17), 10169–10174 (1996)

    Article  Google Scholar 

  48. P.H. Frederikse, Amyloid-like protein structure in mammalian ocular lenses. Curr. Eye Res. 20(6), 462–468 (2000)

    Article  Google Scholar 

  49. L.E. Goldstein, J.A. Muffat, R.A. Cherny, R.D. Moir, M.H. Ericsson, X. Huang, C. Mavros, J.A. Coccia, K.Y. Faget, K.A. Fitch, C.L. Masters, R.E. Tanzi, T. Chylack, A.I. Bush, Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361(9365), 1258–1265 (2003)

    Article  Google Scholar 

  50. J.A. Moncaster, R. Pineda, R.D. Moir, S. Lu, M.A. Burton, J.G. Ghosh, M. Ericsson, S.J. Soscia, A. Mocofanescu, R.D. Folkerth, R.M. Robb, J.R. Kuszak, J.I. Clark, R.E. Tanzi, D.G. Hunter, L.E. Goldstein, Alzheimer’s disease amyloid-b links lens and brain pathology in Down syndrome. PLoS ONE 5(5), e10659 (2010). www.plosone.org

  51. S. Frost, R.N. Martins, Y. Kanagasingam, Ocular biomarkers for early detection of Alzheimer’s disease. J. Alzheimers Dis. 22(1), 1–16 (2010)

    Google Scholar 

  52. S. Long, R.R. Ansari, Early cataract detection by dynamic light scattering with sparse Bayesian learning. J. Innov. Opt. Health Sci. 2(3), 303–313 (2009)

    Article  Google Scholar 

  53. S. Long, R.R. Ansari, Sparse Bayesian learning for the Laplace transform inversion in dynamic light scattering. J. Comput. Appl. Math. 235, 2861–2872 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. F.A. Cucinotta, F.K. Manuel, J. Jones, G. Izard, J. Murrey, B. Djojonegro, M. Wear, Space radiation and cataracts in astronauts. Radiat. Res. 156(5), 460–466 (2001)

    Article  Google Scholar 

  55. Z.N. Rastegar, P. Eckart, M. Mertz, Radiation-induced cataract in astronauts and cosmonauts. Graefe’s Arch. Clin. Exp. Ophthalmol. 240(7), 543–547 (2002)

    Article  Google Scholar 

  56. R.R. Ansari, J. Sebag, Non-invasive monitoring of ocular health in space, in Teleophthalmology, ed. by K. Yogesan, S. Kumar, L. Goldschmidt, J. Cuadros (Springer, Berlin, 2006), pp. 267–273 (Chap. 32)

    Chapter  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Valery Tuchin for inviting him to write this chapter. He is also indebted to many colleagues and collaborators with whom experiments reported in this chapter were conducted. These include Sam Zigler and Manuel Datiles of NEI/NIH in Bethesda, MD, for animal and clinical cataract studies, Luigi Rovati of the University of Modena in Italy for glaucoma studies, John Clark of the University of Washington in Seattle for pantethine treatment, Frank Giblin of the Oakland University in MI for guinea pig HBO and rabbit X-ray studies, Michelle Chenault of FDA, Rockville Pike in MD for studies on diabetic sand rats, Jerry Sebag of Doheny Eye Institute in Los Angeles, CA, for vitreopathy studies, Kwang Suh and Jim King of the author’s laboratory for new instrument development, and Su-Long Nyeo of the Cheng Kung University in Taiwan for new software development. The support under NASA-NIH and NASA-FDA interagency agreements on the development and use of QELS/DLS in ophthalmology and funding from the John H. Glenn Biomedical Engineering Consortium for the bioastronautics research are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat R. Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Ansari, R.R. (2013). Quasi-Elastic Light Scattering in Ophthalmology. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_14

Download citation

Publish with us

Policies and ethics