Skip to main content

Process of Nanojoining

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology
  • 25k Accesses

Abstract

Joining is an integral part of manufacturing. Microjoining and macrojoining have been widely used to join metallic and polymeric parts. The parts are often joined via welding. The process often involves melting the parts and adding a filler material that resolidifies to form a strong joint. The energy source to melt the parts can be a laser beam, an electron beam, friction, or ultrasound. Sometimes pressure is applied to enhance the process. Brazing and soldering are also processes commonly used in metal joining. As nanomaterials become more prevalent, nanojoining gains importance. Nanojoining facilitates the assembly of nano-sized building blocks to form practical products. It can also involve the use of nanomaterials to assist joining in bulk materials. In this chapter, the unique properties of nanomaterials owing to the extremely small dimensions and joining of nanoparticles and nanowires via laser irradiation, solder reflow, application of energetic particles such as an electron beam or current, and other methods are discussed. The use of nanomaterials that assist joining of bulk materials by reducing the joining temperature is also reviewed. The addition of nanoparticles and nanotubes can also enhance the properties of the composites formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin – nanotube composite. Science 265:1212–1214

    Article  Google Scholar 

  • Arai S, Fujimori A, Murai M, Endo M (2008) Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater Lett 62:3545–3548

    Article  Google Scholar 

  • Bakshi SR, Singh V, Balani K, McCartney DG, Seal S, Agarwal A (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202:5162–5169

    Article  Google Scholar 

  • Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites – a review. Int Mater Rev 55:41–64

    Article  Google Scholar 

  • Bal S, Samal SS (2007) Carbon nanotube reinforced polymer composites – a state of the art. Bull Mater Sci 30:379–386

    Article  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  • Banhart F (2001) The formation of a connection between carbon nanotubes in an electron beam. Nano Lett 1:329–332

    Article  Google Scholar 

  • Bao Z, Feng Y, Dodabalapur A, Raju VR, Lovinger AJ (1997) High-performance plastic transistors fabricated by printing techniques. Chem Mater 9:1299–1301

    Article  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  Google Scholar 

  • Cai H, Yan F, Xue Q (2004) Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater Sci Eng A 364:94–100

    Article  Google Scholar 

  • Chen WX, Tu JP, Wang LY, Gan HY, Xu ZD, Zhang XB (2003) Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41:215–222

    Article  Google Scholar 

  • Cui Q, Gao F, Mukherjee S, Gu Z (2009) Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5:1246–1257

    Article  Google Scholar 

  • Deshpande VV, Chandra B, Caldwell R, Novikov DS, Hone J, Bockrath M (2009) Mott insulating state in ultraclean carbon nanotubes. Science 323:106

    Article  Google Scholar 

  • Dilandro L, Dibenedetto AT, Groeger J (1988) The effect of fiber-matrix stress transfer on the strength of fiber-reinforced composite materials. Polym Compos 9:209–221

    Article  Google Scholar 

  • Feng Y, Yuan HL, Zhang M (2005) Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 55:211–218

    Article  Google Scholar 

  • Fuse T, Moriyama S, Aoyagi Y, Suzuki M, Ishibashi K (2003) Two-electron and four-electron periodicity in single-wall carbon nanotube quantum dots. Superlattices Microstruct 34:377

    Article  Google Scholar 

  • Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265:1684–1686

    Article  Google Scholar 

  • Goh CS, Wei J, Lee LC, Gupta M (2008) Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68:1432–1439

    Article  Google Scholar 

  • Gu Z, Chen Y, Gracias DH (2004) Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive. Langmuir 20:11308–11311

    Article  Google Scholar 

  • Gülseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51:7377–7380

    Article  Google Scholar 

  • Guo C, Zuo Y, Zhao X, Zhao J, Xiong J (2007) The effects of pulse-reverse parameters on the properties of Ni-carbon nanotubes composite coatings. Surf Coat Technol 201:9491–9496

    Article  Google Scholar 

  • Hansen N (2004) Hall–Petch relation and boundary strengthening. Scr Mater 51:801

    Article  Google Scholar 

  • He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19:1128–1132

    Article  Google Scholar 

  • Hensel JC, Tung RT, Poate JM, Unterwald FC (1985) Specular boundary scattering and electrical transport in single-crystal thin films of CoSi2. Phys Rev Lett 54:1840

    Article  Google Scholar 

  • Hiroshi N, Tomoaki H, Tadashi T (2011) Bonding process of Cu/Cu joint using Cu nanoparticle paste. Trans JWRI 40:33–36

    Google Scholar 

  • Hongke Y, Zhiyong G, Yu T, Gracias DH (2006) Integrating nanowires with substrates using directed assembly and nanoscale soldering. Nanotechnol IEEE Trans 5:62–66

    Article  Google Scholar 

  • Hu A, Panda SK, Khan MI, Zhou Y (2009) Laser welding, microwelding, nanowelding and nanoprocessing. Chin J Lasers 36:3149–3159

    Article  Google Scholar 

  • Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX (2010) Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl Phys Lett 97:153117

    Article  Google Scholar 

  • Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60:835–838

    Article  Google Scholar 

  • Ide E, Angata S, Hirose A, Kobayashi KF (2005) Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53:2385–2393

    Article  Google Scholar 

  • Kang X, Mai Z, Zou X, Cai P, Mo J (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143–150

    Article  Google Scholar 

  • Khang DY, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208

    Article  Google Scholar 

  • Kiefer AM, Paskiewicz DM, Clausen AM, Buchwald WR, Soref RA, Lagally MG (2011) Si/Ge junctions formed by nanomembrane bonding. ACS Nano 5:1179

    Article  Google Scholar 

  • Kittel C (2005) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  • Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Fréchet JMJ (2007a) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7:1869–1877

    Article  Google Scholar 

  • Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007b) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202

    Article  Google Scholar 

  • Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 14:113–122

    Article  Google Scholar 

  • Laha T, Agarwal A, McKechnie T, Seal S (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258

    Article  Google Scholar 

  • Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349

    Article  Google Scholar 

  • Lourie O, Wagner HD (1998) Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension. Appl Phys Lett 73:3527

    Article  Google Scholar 

  • Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224

    Article  Google Scholar 

  • Mafuné F, Kohno J-Y, Takeda Y, Kondow T (2003) Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J Am Chem Soc 125:1686–1687

    Article  Google Scholar 

  • McEuen P (2005). Introduction to solid state physics (ed: Johnson S). Wiley, New Jersey, pp 515–564

    Google Scholar 

  • Mehrotra G, Jha G, Goud JD, Raj PM, Venkatesan M, Iyer M, Hess D, Tummala R (2008). Low-temperature, fine-pitch interconnections using self-patternable metallic nanoparticles as the bonding layer. In: Electronic components and technology conference, pp 1410–1416

    Google Scholar 

  • Nai SML, Wei J, Gupta M (2006) Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A 423:166–169

    Article  Google Scholar 

  • Pande CS, Masumura RA, Armstrong RW (1993) Pile-up based Hall–Petch relation for nanoscale materials. Nanostruct Mater 2:323

    Article  Google Scholar 

  • Qi X, Xue C, Huang X, Huang Y, Zhou X, Li H, Liu D, Boey F, Yan Q, Huang W, De Feyter S, Müllen K, Zhang H (2009) Polyphenylene dendrimer-templated in situ construction of inorganic–organic hybrid rice-shaped architectures. Adv Funct Mater 20:43–49

    Article  Google Scholar 

  • Qi X, Huang Y, Klapper M, Boey F, Huang W, Feyter SD, Müllen K, Zhang H (2010) In situ modification of three-dimensional polyphenylene dendrimer-templated CuO rice-shaped architectures with electron beam irradiation. J Phys Chem C 114:13465–13470

    Article  Google Scholar 

  • Ridley BA, Nivi B, Jacobson JM (1999) All-inorganic field effect transistors fabricated by printing. Science 286:746–749

    Article  Google Scholar 

  • Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45

    Article  Google Scholar 

  • Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48

    Article  Google Scholar 

  • Shi WS, Zheng YF, Wang N, Lee CS, Lee ST (2001) A general synthetic route to III–V compound semiconductor nanowires. Adv Mater 13:591–594

    Article  Google Scholar 

  • Sinian L, Souzhi S, Tianqin Y, Huimin C, Youshou Z, Hong C (2005) Microstructure and fracture surfaces carbon nanotubes/magnesium matrix composite. Mater Sci Forum 488/489:893–896

    Article  Google Scholar 

  • Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S (2004) Melt processing of SWCNT-polyimide nanocomposite fibers. Compos Part B Eng 35:439–446

    Article  Google Scholar 

  • Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  • Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385

    Article  Google Scholar 

  • Stutzmann N, Friend RH, Sirringhaus H (2003) Self-aligned, vertical-channel, polymer field-effect transistors. Science 299:1881–1884

    Article  Google Scholar 

  • Tang J, Wang H-T, Lee DH, Fardy M, Huo Z, Russell TP, Yang P (2010) Holey silicon as an efficient thermoelectric material. Nano Lett 10:4279

    Article  Google Scholar 

  • Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505

    Article  Google Scholar 

  • Tohmyoh H, Fukui S (2009) Self-completed Joule heat welding of ultrathin Pt wires. Phys Rev B 80:155403

    Article  Google Scholar 

  • Tohmyoh H, Imaizumi T, Hayashi H, Saka M (2007) Welding of Pt nanowires by Joule heating. Scr Mater 57:953–956

    Article  Google Scholar 

  • Wakuda D, Hatamura M, Suganuma K (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305

    Article  Google Scholar 

  • Wakuda D, Kim K-S, Suganuma K (2010) Ag nanoparticle paste synthesis for room temperature bonding. IEEE Trans Compon Packag Technol 33:437–442

    Article  Google Scholar 

  • Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95:525

    Article  Google Scholar 

  • Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171–176

    Article  Google Scholar 

  • Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon 37:855–858

    Article  Google Scholar 

  • Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47:1723–1737

    Article  Google Scholar 

  • Yu J-K, Mitrovic S, Tham D, Varghese J, Heath JR (2010) Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol 5:718

    Article  Google Scholar 

  • Zhan J, Bando Y, Hu J, Liu Z, Yin L, Golberg D (2005) Fabrication of metal–semiconductor nanowire heterojunctions. Angew Chem Int Ed 44:2140–2144

    Article  Google Scholar 

  • Zhang H, Grim PCM, Vosch T, Wiesler UM, Berresheim AJ, Müllen K, De Schryver FC (2000) Discrimination of dendrimer aggregates on mica based on adhesion force: a pulsed force mode atomic force microscopy study. Langmuir 16:9294–9298

    Article  Google Scholar 

  • Zhang W, Brongersma SH, Richard O, Brijs B, Palmans R, Froyen L, Maex K (2004) Influence of the electron mean free path on the resistivity of thin metal films. Microelectron Eng 76:146

    Article  Google Scholar 

  • Zhao M, Li JC, Jiang Q (2003) Hall–Petch relationship in nanometer size range. J Alloys Compd 361:160

    Article  Google Scholar 

  • Zhong R, Cong H, Hou P (2003) Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41:848–851

    Article  Google Scholar 

  • Zhou S-M, Zhang X-B, Ding Z-P, Min C-Y, Xu G-I, Zhu W-M (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos Part A Appl Sci Manuf 38:301–306

    Article  Google Scholar 

  • Zschieschang U, Klauk H, Halik M, Schmid G, Dehm C (2003) Flexible organic circuits with printed gate electrodes. Adv Mater 15:1147–1151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Qi, X., Nie, T.J., Xinning, H. (2015). Process of Nanojoining. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_61

Download citation

Publish with us

Policies and ethics