Skip to main content

Properties and Applications of Polymer Nanocomposite

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Chapter 3, “Polymer Surface Treatment and Coating Technologies” mainly discusses the extensive studies which have been carried out on properties and applications of polymer and polymer nanocomposites in the field of bioelectronics. It also highlights on some of the interesting engineering applications such as high-performance composites used in aerospace application. In addition to that, we briefly talked about biodegradable as well as biocompatible polymers which have gained significant attention due to its widespread use in the preparation of biocomposites for various biomedical as well as agricultural applications. Next part of the discussion emphasizes on conducting polymer composite mainly on carbon nanotube (CNT)/polymer composite because of continuous interest in the use of polymers (conjugate) for fabrication of numerous light and/or foldable electronic devices and they are also extremely promising candidates for sensor applications. It also focused on the application of polymer and polymer nanocomposites for packaging areas. The main advantages of plastics as compared with other packaging materials are that they are lightweight and low cost and have good processability, high transparency and clarity, as well as good barrier properties with respect to water vapor, gases, and fats. Our discussion on polymer composite ends with its utility in automotive applications. Because they are lightweight and due to their property tailorability, design flexibility, and processability, polymers and polymer composites have been widely used in automotive industry to replace some heavy metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2005) Polym Autom Ind Polym 3(11+12):20

    Google Scholar 

  • A.T. Kearney Inc (2012) Plastics: the future for automakers and chemical companies

    Google Scholar 

  • Agarwal S (2012) 5.15 – Biodegradable polyesters. In: Krzysztof M, Martin M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 333–361

    Google Scholar 

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Science 265(5176):1212–1214

    Google Scholar 

  • Alamri H, Low IM (2012) Polym Test 31(6):810–818

    Google Scholar 

  • Aldor IS, Keasling JD (2003) Curr Opin Biotechnol 14(5):475–483

    Google Scholar 

  • Alok C, Gan LH, Hu X (2011) Dramatic solvent effect on interaction kinetics and self-organization of phenyl-C61 butyric acid methyl ester in a triblock copolymer. Macromol Chem Phys 212(8):813–820

    Google Scholar 

  • APME (1999) Plastics a material of choice for the automotive industry. APME

    Google Scholar 

  • Artukovic E, Kaempgen M, Hecht DS, Roth S, Grüner G (2005) Nano Lett 5(4):757–760

    Google Scholar 

  • Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) J Polym Sci B 41(5):520–527

    Google Scholar 

  • Averous L, Boquillon N (2004) Carbohydr Polym 56(2):111–122

    Google Scholar 

  • Azzaroni O, Moya S, Farhan T, Brown AA, Huck WTS (2005) Macromolecules 38(24):10192–10199

    Google Scholar 

  • Bai JB, Allaoui A (2003) Compos A Appl Sci Manuf 34(8):689–694

    Google Scholar 

  • Basilia BA, Mendoza HD, Cada LG (2002) Philipp Eng J 22(2):19–34

    Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787–792

    Google Scholar 

  • Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J, Haddon RC (2005) J Am Chem Soc 127(16):5990–5995

    Google Scholar 

  • Bhattacharya SS, Chaudhari SB (2013) Int J Eng Res Dev 7(6):01–05

    Google Scholar 

  • Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer 44(8):2373–2377

    Google Scholar 

  • Blanchet GB, Subramoney S, Bailey RK, Jaycox GD, Nuckolls C (2004) Appl Phys Lett 85(5):828–830

    Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34(2):125–155

    Google Scholar 

  • Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17(9):1186–1191

    Google Scholar 

  • Byrne MT, McNamee WP, Gun’ko YK (2008) Nanotechnology 19(41):415707

    Google Scholar 

  • Chaurasia A, Wang L, Gan LH, Mei T, Li Y, Liang YN, Hu X (2012) Eur Polym J 49(3):630–636

    Google Scholar 

  • Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) J Am Chem Soc 124(31):9034–9035

    Google Scholar 

  • Cheung W, Chiu PL, Parajuli RR, Ma Y, Ali SR, He H (2009) J Mater Chem 19(36):6465–6480

    Google Scholar 

  • Chieng BW, Ibrahim NA, Wan Yunus WMZ, Hussein MZ, Silverajah VSG (2012) Int J Mol Sci 13(9):10920–10934

    Google Scholar 

  • Cho JW, Kim JW, Jung YC, Goo NS (2005) Macromol Rapid Commun 26(5):412–416

    Google Scholar 

  • Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) J Appl Phys 94(9):6034–6039

    Google Scholar 

  • Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit J-M, Schreiber J, Chauvet O (2001) Chem Commun 16:1450–1451

    Google Scholar 

  • Colbert D, Smalley R (2002) Past, present and future of fullerene nanotubes: buckytubes. In: Perspectives of fullerene nanotechnology. Springer, Netherlands, pp 3–10

    Google Scholar 

  • Coleman JN, Khan U, Gun'ko YK (2006) Adv Mater 18(6):689–706

    Google Scholar 

  • Dai L, Mau AWH (2001) Adv Mater 13(12–13):899–913

    Google Scholar 

  • Dalton AB, Stephan C, Coleman JN, McCarthy B, Ajayan PM, Lefrant S, Bernier P, Blau WJ, Byrne HJ (2000) J Phys Chem B 104(43):10012–10016

    Google Scholar 

  • Dasari A, Yu Z-Z, Mai Y-W (2005) Polymer 46(16):5986–5991

    Google Scholar 

  • Dean KM, Do MD, Petinakis E, Yu L (2008) Compos Sci Technol 68(6):1453–1462

    Google Scholar 

  • Desai AV, Haque MA (2005) Thin-Walled Struct 43(11):1787–1803

    Google Scholar 

  • Diao YY, Liu H, Fu YH (2011) Int J Nanomed 6

    Google Scholar 

  • Ding B, Wang M, Yu J, Sun G (2009) Sensors 9(3):1609–1624

    Google Scholar 

  • Donnet JB, Bansal RC, Wang MJ (1993) Carbon black: science and technology. Taylor & Francis, New York

    Google Scholar 

  • Du F, Fischer JE, Winey KI (2003) J Polym Sci B 41(24):3333–3338

    Google Scholar 

  • Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37(24):9048–9055

    Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Food Control 22(3–4):408–413

    Google Scholar 

  • Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez AN, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Science 305(5689):1447–1450

    Google Scholar 

  • Feldman AK, Colasson B, Fokin VV (2004) Org Lett 6(22):3897–3899

    Google Scholar 

  • Ferrer-Anglada N, Kaempgen M, Roth S (2006) Phys Status Solidi (b) 243(13):3519–3523

    Google Scholar 

  • Fong N, Simmons A, Poole-Warren L (2011) Elastomeric nanocomposites for biomedical applications. In: Mittal V, Kim JK, Pal K (eds) Recent advances in elastomeric nanocomposites, vol 9. Springer, Berlin/Heidelberg, pp 255–278

    Google Scholar 

  • Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Polymer 47(5):1704–1714

    Google Scholar 

  • Frost & Sullivan (2005) Frost & Sullivan report: lightweight materials for automotive applications

    Google Scholar 

  • Fulghum TM, Taranekar P, Advincula RC (2008) Macromolecules 41(15):5681–5687

    Google Scholar 

  • Gao M, Dai L, Wallace GG (2003) Electroanalysis 15(13):1089–1094

    Google Scholar 

  • Gao H, Louche G, Sumerlin BS, Jahed N, Golas P, Matyjaszewski K (2005) Macromolecules 38(22):8979–8982

    Google Scholar 

  • Gao Y, Li X, Gong J, Fan B, Su Z, Qu L (2008) J Phys Chem C 112(22):8215–8222

    Google Scholar 

  • Gardner J, Bartlett P, Persaud KC, Pelosi P (1992) Sensor arrays using conducting polymers for an artificial nose. In: Sensors and sensory systems for an electronic nose, vol 212. Springer, Netherlands, pp 237–256

    Google Scholar 

  • Geng H-Z, Kim KK, So KP, Lee YS, Chang Y, Lee YH (2007) J Am Chem Soc 129(25):7758–7759

    Google Scholar 

  • Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124(5):760–761

    Google Scholar 

  • Gruner G (2006) J Mater Chem 16(35):3533–3539

    Google Scholar 

  • Guigo N, Vincent L, Mija A, Naegele H, Sbirrazzuoli N (2009) Compos Sci Technol 69(11–12):1979–1984

    Google Scholar 

  • Hamzehlou S, Katbab AA (2007) J Appl Polym Sci 106(2):1375–1382

    Google Scholar 

  • Hernández-Pérez A, Avilés F, May-Pat A, Valadez-González A, Herrera-Franco PJ, Bartolo-Pérez P (2008) Compos Sci Technol 68(6):1422–1431

    Google Scholar 

  • Hu L, Hecht DS, Grüner G (2004) Nano Lett 4(12):2513–2517

    Google Scholar 

  • Huang CL, Kumar S, Tan JJZ, Boey FYC, Venkatraman SS, Steele TWJ, Loo JSC (2013) Polym Degrad Stab 98(2):619–626

    Google Scholar 

  • Hule RA, Pochan DJ (2007) J Polym Sci B 45(3):239–252

    Google Scholar 

  • Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Nat Mater 2(11):731–734

    Google Scholar 

  • Iijima S (1991) Nature 354:3

    Google Scholar 

  • Istrate OM, Chen B (2012) J Appl Polym Sci 125(S1):E102–E112

    Google Scholar 

  • Janata J, Josowicz M (2003) Nat Mater 2(1):19–24

    Google Scholar 

  • Ji S, Li Y, Yang M (2008) Sens Actuators B 133(2):644–649

    Google Scholar 

  • Jiang B, Liu C, Zhang C, Wang B, Wang Z (2007) Compos B Eng 38(1):24–34

    Google Scholar 

  • Jin L, Bower C, Zhou O (1998) Appl Phys Lett 73(9):1197–1199

    Google Scholar 

  • Joanny JF (1992) Langmuir 8(3):989–995

    Google Scholar 

  • Kaempgen M, Duesberg GS, Roth S (2005) Appl Surf Sci 252(2):425–429

    Google Scholar 

  • Karus M, Ortmann S, Gahle C, Pendarovski C (2006) Use of natural fibres in composites for the German automotive production from 1999 till 2005 nova-Institut

    Google Scholar 

  • Kelnar I, Kotek J, Kaprálková L, Munteanu BS (2005) Polyamide nanocomposites with improved toughness. J Appl Polym Sci 96(2):288–293

    Google Scholar 

  • Kim KH, Jo WH (2009) Carbon 47(4):1126–1134

    Google Scholar 

  • Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem Interfacial Electrochem 161(2):419–423

    Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40(11):2004–2021

    Google Scholar 

  • Kong B, Lee JK, Choi IS (2007) Langmuir 23(12):6761–6765

    Google Scholar 

  • Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Small 2(8–9):1021–1025

    Google Scholar 

  • Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Macromolecules 41(20):7536–7542

    Google Scholar 

  • Kovtyukhova NI, Mallouk TE (2005) J Phys Chem B 109(7):2540–2545

    Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Macromolecules 30(14):4097–4102

    Google Scholar 

  • Kuriakose B, De SK, Bhagawan SS, Sivaramkrishnan R, Athithan SK (1986) J Appl Polym Sci 32(6):5509–5521

    Google Scholar 

  • Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R (2003) Science 299(5605):371–374

    Google Scholar 

  • LeBaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15(1–2):11–29

    Google Scholar 

  • Lee BS, Lee JK, Kim W-J, Jung YH, Sim SJ, Lee J, Choi IS (2007) Biomacromolecules 8(2):744–749

    Google Scholar 

  • Lee SY, Chen H, Hanna MA (2008) Ind Crops Prod 28(1):95–106

    Google Scholar 

  • Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Angew Chem Int Ed Engl 41(6):1053–1057

    Google Scholar 

  • Li Y, Sun XS (2011) J Biobased Mater Bioenerg 5(4):452–459

    Google Scholar 

  • Li X-h, Wu B, Huang J-E, Zhang J, Liu Z-F, Li H-l (2003) Carbon 41(8):1670–1673

    Google Scholar 

  • Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Nano Lett 6(11):2472–2477

    Google Scholar 

  • Li R, Zhang H, Qi Q (2007a) Bioresour Technol 98(12):2313–2320

    Google Scholar 

  • Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007b) Adv Funct Mater 17(16):3207–3215

    Google Scholar 

  • Liang Y, Omachinski S, Logsdon J, Whan Cho J, Lan T (2008) Nano-effect in in situ nylon-6 nanocomposites. Nanocor technical papers

    Google Scholar 

  • Liu L, Wagner HD (2005) Compos Sci Technol 65(11–12):1861–1868

    Google Scholar 

  • Liu X, Wu Q (2002) Polyamide 66/clay nanocomposites via melt intercalation. Macromol Mater Eng 287(3):180–186

    Google Scholar 

  • Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Nano Lett 4(4):671–675

    Google Scholar 

  • Liu Z-Q, Ma J, Cui Y–H (2008) Carbon 46(6):890–897

    Google Scholar 

  • Liu H, Han C, Dong L (2010) J Appl Polym Sci 115(5):3120–3129

    Google Scholar 

  • Lozano K, Bonilla-Rios J, Barrera EV (2001) J Appl Polym Sci 80(8):1162–1172

    Google Scholar 

  • Ma Y, Ali SR, Wang L, Chiu PL, Mendelsohn R, He H (2006a) J Am Chem Soc 128(37):12064–12065

    Google Scholar 

  • Ma Y, Ali SR, Dodoo AS, He H (2006b) J Phys Chem B 110(33):16359–16365

    Google Scholar 

  • Ma PC, Kim J-K, Tang BZ (2007) Compos Sci Technol 67(14):2965–2972

    Google Scholar 

  • Ma Y, Chiu PL, Serrano A, Ali SR, Chen AM, He H (2008a) J Am Chem Soc 130(25):7921–7928

    Google Scholar 

  • Ma PC, Tang BZ, Kim J-K (2008b) Carbon 46(11):1497–1505

    Google Scholar 

  • Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) ACS Appl Mater Interfaces 1(5):1090–1096

    Google Scholar 

  • Ma P–C, Siddiqui NA, Marom G, Kim J-K (2010) Compos A Appl Sci Manuf 41(10):1345–1367

    Google Scholar 

  • Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Carbon 43(7):1499–1505

    Google Scholar 

  • Manesh KM, Gopalan AI, Kwang-Pill L, Santhosh P, Kap-Duk S, Duk-Dong L (2007) Nanotechnol IEEE Trans 6(5):513–518

    Google Scholar 

  • Meng H, Sui GX, Fang PF, Yang R (2008) Polymer 49(2):610–620

    Google Scholar 

  • Messersmith PB, Giannelis EP (1994) Chem Mater 6(10):1719–1725

    Google Scholar 

  • Messersmith PB, Giannelis EP (1995) J Polym Sci A Polym Chem 33(7):1047–1057

    Google Scholar 

  • Milner ST (1991) Science 251(4996):905–914

    Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194–5205

    Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Google Scholar 

  • Mosqueira VCF, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barratt G (2001) Biomaterials 22(22):2967–2979

    Google Scholar 

  • Moya S, Azzaroni O, Farhan T, Osborne VL, Huck WTS (2005) Angew Chem Int Ed 44(29):4578–4581

    Google Scholar 

  • Nemati M, Khademieslam H, Talaiepour M, Ghasemi I, Bazyar B (2013) Investigation on the mechanical properties of nanocomposite based on wood flour/recycle polystyrene and nanoclay. J Basic Appl Sci Res 3(3):688–692

    Google Scholar 

  • Oprea S, Gradinariu P, Joga A, Oprea V (2013) Polym Degrad Stab 98(8):1481–1488

    Google Scholar 

  • Ourique AF, Pohlmann AR, Guterres SS, Beck RCR (2008) Int J Pharm 352(1–2):1–4

    Google Scholar 

  • Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Carbon 42(14):2849–2854

    Google Scholar 

  • Pan Y, Cheng HKF, Li L, Chan SH, Zhao J, Juay YK (2010) J Polym Sci B 48(21):2238–2247

    Google Scholar 

  • Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Chem Phys Lett 364(3–4):303–308

    Google Scholar 

  • Park H-M, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Macromolecules 37(24):9076–9082

    Google Scholar 

  • Park SJ, Choi J-I, Lee SY (2005) Enzyme Microb Technol 36(4):579–588

    Google Scholar 

  • Park C, Wilkinson J, Banda S, Ounaies Z, Wise KE, Sauti G, Lillehei PT, Harrison JS (2006) J Polym Sci B 44(12):1751–1762

    Google Scholar 

  • Polymer nanocomposites drive opportunities in the automotive sector. http://www.nanowerk.com/spotlight/spotid=23934.php

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76(20):2868–2870

    Google Scholar 

  • Qian D, Yu M-F, Ruoff RS, Wagner GJ, Liu WK (2002) Appl Mech Rev 55(6):495–533

    Google Scholar 

  • Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Phys Rev B 50(17):12496–12508

    Google Scholar 

  • Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2004) J Am Chem Soc 127(2):496–497

    Google Scholar 

  • Ramasubramaniam R, Chen J, Liu H (2003) Appl Phys Lett 83(14):2928–2930

    Google Scholar 

  • Raphael E, De Gennes PG (1992) J Phys Chem 96(10):4002–4007

    Google Scholar 

  • Reddy CSK, Ghai R, Rashmi T, Kalia VC (2003) Bioresour Technol 87(2):137–146

    Google Scholar 

  • Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Appl Phys Lett 88(23):233506–233506-3

    Google Scholar 

  • Saha S, Bruening ML, Baker GL (2012) Macromolecules 45(22):9063–9069

    Google Scholar 

  • Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Prog Polym Sci 35(7):837–867

    Google Scholar 

  • Sainz R, Benito AM, Martínez MT, Galindo JF, Sotres J, Baró AM, Corraze B, Chauvet O, Maser WK (2005) Adv Mater 17(3):278–281

    Google Scholar 

  • Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40(21):5967–5971

    Google Scholar 

  • Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44(19):5893–5899

    Google Scholar 

  • Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. In: Nanocomposite science and technology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 77–153

    Google Scholar 

  • Shaffer MSP, Windle AH (1999) Adv Mater 11(11):937–941

    Google Scholar 

  • Shah RR, Merreceyes D, Husemann M, Rees I, Abbott NL, Hawker CJ, Hedrick JL (2000) Macromolecules 33(2):597–605

    Google Scholar 

  • Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2006) Biomacromolecules 7(7):2237–2242

    Google Scholar 

  • Shikinami Y, Matsusue Y, Nakamura T (2005) Biomaterials 26(27):5542–5551

    Google Scholar 

  • Shim BS, Tang Z, Morabito MP, Agarwal A, Hong H, Kotov NA (2007) Chem Mater 19(23):5467–5474

    Google Scholar 

  • Simmons TJ, Hashim D, Vajtai R, Ajayan PM (2007) J Am Chem Soc 129(33):10088–10089

    Google Scholar 

  • Snaith HJ, Whiting GL, Sun B, Greenham NC, Huck WTS, Friend RH (2005) Nano Lett 5(9):1653–1657

    Google Scholar 

  • Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010

    Google Scholar 

  • Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2002) Chem Mater 15(1):175–178

    Google Scholar 

  • Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung S-W, Choi H, Heath JR (2001) Angew Chem Int Ed 40(9):1721–1725

    Google Scholar 

  • Steele TWJ, Huang CL, Kumar S, Irvine S, Boey FYC, Loo JSC, Venkatraman SS (2012) Acta Biomater 8(6):2263–2270

    Google Scholar 

  • Steinert BW, Dean DR (2009) Polymer 50(3):898–904

    Google Scholar 

  • Stutzmann N, Friend RH, Sirringhaus H (2003) Science 299(5614):1881–1884

    Google Scholar 

  • Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K (2005) Macromolecules 38(18):7540–7545

    Google Scholar 

  • Sumita M, Tsukumo Y, Miyasaka K, Ishikawa K (1983) J Mater Sci 18(6):1758–1764

    Google Scholar 

  • Sumita M, Shizuma T, Miyasaka K, Ishikawa K (1984) Rheologica Acta 23(4):396–400

    Google Scholar 

  • Suzhu Y (2012) Development of high performance ternary polymer composites for automotive applications. SIMTech project report

    Google Scholar 

  • Szeteiová K (2010) Automotive materials: plastics in automotive markets today. http://www.mtf.stuba.sk/docs//internetovy_casopis/2010/3/szeteiova.pdf

  • Tamburri E, Orlanducci S, Terranova ML, Valentini F, Palleschi G, Curulli A, Brunetti F, Passeri D, Alippi A, Rossi M (2005) Carbon 43(6):1213–1221

    Google Scholar 

  • Tang X, Alavi S (2012) J Agric Food Chem 60(8):1954–1962

    Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106(3):1105–1136

    Google Scholar 

  • The Freedonia Group, Inc (2011) Green packaging

    Google Scholar 

  • Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley R, Smalley RE (1996) Science 273(5274):483–487

    Google Scholar 

  • Thostenson ET, Chou T-W (2002) J Phys D Appl Phys 35(16):L77

    Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Compos Sci Technol 61(13):1899–1912

    Google Scholar 

  • Tian Y, Wu W-C, Chen C-Y, Strovas T, Li Y, Jin Y, Su F, Meldrum DR, Jen AKY (2010) J Mater Chem 20(9):1728–1736

    Google Scholar 

  • Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67(9):3057–3064

    Google Scholar 

  • Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) J Appl Polym Sci 87(4):708–713

    Google Scholar 

  • van Zanten JH (1994) Macromolecules 27(23):6797–6807

    Google Scholar 

  • Vert M, Li SM, Spenlehauer G, Guerin P (1992) J Mater Sci Mater Med 3(6):432–446

    Google Scholar 

  • Vidal A, Guyot A, Kennedy JP (1980) Polym Bull 2(5):315–320

    Google Scholar 

  • Wang Y, Iqbal Z, Mitra S (2005) J Am Chem Soc 128(1):95–99

    MATH  Google Scholar 

  • Wang W, Fernando KAS, Lin Y, Meziani MJ, Veca LM, Cao L, Zhang P, Kimani MM, Sun Y-P (2008) J Am Chem Soc 130(4):1415–1419

    Google Scholar 

  • Whiting GL, Snaith HJ, Khodabakhsh S, Andreasen JW, Breiby DW, Nielsen MM, Greenham NC, Friend RH, Huck WT (2006) Nano Lett 6(3):573–578

    Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Science 305(5688):1273–1276

    Google Scholar 

  • Wu F, Lan X, Ji D, Liu Z, Yang W, Yang M (2013) J Appl Polym Sci 129(5):3019–3027

    Google Scholar 

  • Xu R, Manias E, Snyder AJ, Runt J (2000) Macromolecules 34(2):337–339

    Google Scholar 

  • Yan XB, Han ZJ, Yang Y, Tay B-K (2007) J Phys Chem C 111(11):4125–4131

    Google Scholar 

  • Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Adv Funct Mater 17(13):2062–2069

    Google Scholar 

  • Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci A Polym Chem 31(10):2493–2498

    Google Scholar 

  • Yu Z, Liu L (2005) J Biomater Sci Polym Ed 16(8):15

    Google Scholar 

  • Zengin H, Zhou W, Jin J, Czerw R, Smith DW, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14(20):1480–1483

    Google Scholar 

  • Zhang X, Manohar SK (2004) J Am Chem Soc 126(40):12714–12715

    Google Scholar 

  • Zhang X, Goux WJ, Manohar SK (2004) J Am Chem Soc 126(14):4502–4503

    Google Scholar 

  • Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006a) Nano Lett 6(9):1880–1886

    Google Scholar 

  • Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006b) Carbon 44(4):778–785

    Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nat Mater 2(5):338–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Chaurasia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Chaurasia, A., Suzhu, Y., Henry, C.K.F., Mogal, V.T., Saha, S. (2015). Properties and Applications of Polymer Nanocomposite. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_22

Download citation

Publish with us

Policies and ethics