Skip to main content

Advances in Group Testing

  • Reference work entry
  • First Online:
Handbook of Combinatorial Optimization

Abstract

In combinatorial group testing, there are n items; each has an unknown binary status, positive (i.e., defective) or negative (i.e., good), and the number of positives is upper bounded by an integer d. Suppose there is some method to test whether a subset of items contains at least one positive or not. The test result is said to be positive if it indicates that the subset contains at least one positive item; otherwise, the test result is called negative. The problem is to resolve the status of every item using the minimum number of tests.Group testing (GT) algorithms can be adaptive or nonadaptive. An adaptive algorithm conducts the tests one by one and allows to design later tests using the outcome information of all previous tests. A nonadaptive group testing (NGT) algorithm specifies all tests before knowing any test results, and the benefit is that all tests can be performed in parallel. For the above group testing problem, nonadaptive algorithms require inherently more tests than adaptive ones.Though the research of group testing dates back to Dorfman’s 1943 paper, a renewed interest in the subject occurred recently mainly due to the applications of group testing to the area of computational molecular biology. In applications of molecular biology, a group testing algorithm is called a pooling design, and the composition of each test is called a pool. While it is still important to minimize the number of tests, there are two other goals. First, in the biological setting, screening one pool at a time is far more expensive than screening many pools in parallel; this strongly encourages the use of nonadaptive algorithms. Second, DNA screening is error prone, so it is desirable to design error-tolerant algorithms, which can detect or correct some errors in the test results.In this monograph, some recent algorithmic, complexity, and mathematical results on nonadaptive group testing (and on pooling design) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,400.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. N. Alon, J.H. Spencer, The Probabilistic Method (Wiley, New York, 1992). (Second Edition 2000)

    MATH  Google Scholar 

  2. N. Alon, D. Moshkovitz, S. Safra, Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

    Article  MathSciNet  Google Scholar 

  3. D.J. Balding, W.J. Bruno, E. Knill, D.C. Torney, A comparative survey of non-adaptive pooling designs, in Genetic Mapping and DNA Sequencing (Springer, New York, 1996), pp. 133–154

    Chapter  Google Scholar 

  4. T. Berger, J.W. Mandell, P. Subrahmanya, Maximally efficient two-stage group testing. Biometrics 56, 833–840 (2000)

    Article  MATH  Google Scholar 

  5. J. Borneman, M. Chrobak, G. Della Vedova, A. Figueroa, T. Jiang, Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17(Suppl.), S39–S48 (2001)

    Article  Google Scholar 

  6. W.J. Bruno, D.J. Balding, E. Knill, D.C. Bruce et al., Efficient pooling designs for library screening. Genomics, 26, 21–30 (1995)

    Article  Google Scholar 

  7. H.B. Chen, F.K. Hwang, Exploring the missing link among d-separable, \(\bar{d}\)-separable and d-disjunct matrices. Discret. Appl. Math. 133, 662–664 (2007)

    Article  MathSciNet  Google Scholar 

  8. J. Chen, I.A. Kanj, W. Jia, Vertex cover: further observations and further improvements. J. Algorithm 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.B. Chen, Y. Cheng, Q. He, C. Zhong, Transforming an error-tolerant separable matrix to an error-tolerant disjunct matrix. Discret. Appl. Math. 157(2), 387–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Cheng, D.Z. Du, New constructions of one- and two-stage pooling designs. J. Comput. Biol. 15, 195–205 (2008)

    Article  MathSciNet  Google Scholar 

  11. Y. Cheng, K.-I Ko, W. Wu, On the complexity of non-unique probe selection. Theor. Comput. Sci. 390(1), 120–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Cheng, D.Z. Du, K.-I. Ko, G. Lin, On the parameterized complexity of pooling design. J. Comput. Biol. 16, 1529–1537 (2009)

    Article  MathSciNet  Google Scholar 

  13. Y. Cheng, D.Z. Du, G. Lin, On the upper bounds of the minimum number of rows of disjunct matrices. Optim. Lett. 3(2), 297–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. De Bonis, L. Gasieniec, U. Vaccaro, Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34, 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Dorfman, The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943)

    Article  Google Scholar 

  16. R.G. Downey, M.R. Fellows, Parameterized Complexity (Springer, New York, 1999)

    Book  Google Scholar 

  17. D.-Z. Du, F.K. Hwang, Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing (World Scientific, New Jersey, 2006)

    Google Scholar 

  18. D.-Z. Du, K.-I. Ko, Some completeness results on decision trees and group testing. SIAM J. Algebra. Discret. 8(4), 762–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. D.-Z. Du, K.-I. Ko, Theory of Computational Complexity (Wiley, New York, 2000)

    MATH  Google Scholar 

  20. D.Z. Du, F.K. Hwang, W. Wu, T. Znati, New construction for transversal design. J. Comput. Biol. 13, 990–995 (2006)

    Article  MathSciNet  Google Scholar 

  21. A.G. D’yachkov, V.V. Rykov, Bounds of the length of disjunct codes. Probl. Control Inf. Theory 11, 7–13 (1982)

    MathSciNet  Google Scholar 

  22. A.G. D’yachkov, V.V. Rykov, A.M. Rashad, Superimposed distance codes. Probl. Control Inf. Theory 18, 237–250 (1989)

    MathSciNet  Google Scholar 

  23. A.G. D’yachkov, A.J. Macula, V.V. Rykov, New constructions of superimposed codes. IEEE Trans. Inf. Theory 46, 284–290 (2000)

    MathSciNet  MATH  Google Scholar 

  24. D. Eppstein, M.T. Goodrich, D.S. Hirschberg, Improved combinatorial group testing algorithms for real-world problem sizes. SIAM J. Comput. 36, 1360–1375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Erdős, P. Frankl, Z. Füredi, Families of finite sets in which no set is covered by the union of r others. Isr. J. Math. 51, 79–89 (1985)

    Article  Google Scholar 

  26. M. Farach, S. Kannan, E. Knill, S. Muthukrishnan, Group testing problems with sequences in experimental molecular biology, in Proceedings of the Compression and Complexity of Sequences, ed. by B. Carpentieri et al. (IEEE Press, Los Alamitos, 1997), pp. 357–367

    Google Scholar 

  27. J. Flum, M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Computer Science, an EATCS Series, vol. XIV (Springer, Berlin, 2006)

    Google Scholar 

  28. H.L. Fu, F.K. Hwang, A novel use of t-packings to construct d-disjunct matrices. Discret. Appl. Math. 154, 1759–1762 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Füredi, On r-cover-free families. J. Comb. Theory Ser. A 73, 172–173 (1996)

    Article  MATH  Google Scholar 

  30. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  31. R. Herwig, A.O. Schmitt, M. Steinfath, J. O’ Brien et al., Information theoretical probe selection for hybridisation experiments. Bioinformatics 16, 890–898 (2000)

    Article  Google Scholar 

  32. F.K. Hwang, V.T. Sós, Non-adaptive hypergeometric group testing. Studia Sci. Math. Hung. 22, 257–263 (1987)

    MATH  Google Scholar 

  33. P. Indyk, H.Q. Ngo, A. Rudra, Efficiently decodable non-adaptive group testing, in Proceedings of 21st Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, 2010, pp. 1126–1142

    Google Scholar 

  34. W.H. Kautz, R.C. Singleton, Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10, 363–377 (1964)

    Article  MATH  Google Scholar 

  35. G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert, Optimal robust non-unique probe selection using integer linear programming. Bioinformatics 20, i186–i193 (2004)

    Article  Google Scholar 

  36. E. Knill, Lower bounds for identifying subset members with subset queries, in Proceedings of 6th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 1995, pp. 369–377

    Google Scholar 

  37. O. Lichtenstein, A. Pnueli, Checking that finite state concurrent programs satisfy their linear specification, in Proceedings of 12th ACM Symposium on Principles of Programming Languages (POPL’ 85), 107, New York, 1985, pp. 97–107

    Google Scholar 

  38. A.J. Macula, A simple construction of d-disjunct matrices with certain constant weights. Discret. Math. 162, 311–312 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.J. Macula, Error-correcting nonadaptive group testing with d e-disjunct matrices. Discret. Appl. Math. 80, 217–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. A.J. Macula, Probabilistic nonadaptive group testing in the presence of errors and DNA library screening. Ann. Comb. 3, 61–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.J. Macula, Probabilistic nonadaptive and two-stage group testing with relatively small pools and DNA library screening. J. Comb. Optim. 2, 385–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, New York, 1995)

    Book  MATH  Google Scholar 

  43. H.Q. Ngo, D.Z. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, in DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 55 (American Mathematical Society, Providence, 2000), pp. 171–182

    Google Scholar 

  44. H.Q. Ngo, D.Z. Du, New constructions of non-adaptive and error-tolerance pooling designs. Discret. Math. 243, 161–170 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. H.Q. Ngo, E. Porat, A. Rudra, Efficiently decodable error-correcting list disjunct matrices and applications, in Proceedings of the 38th International Colloquium on Automata, Languages and Programming, Zurich, Switzerland, 2011, pp. 557–568

    Google Scholar 

  46. M. Olson, L. Hood, C. Cantor, D. Botstein, A common language for physical mapping of the human genome. Science 245, 1434–1435 (1989)

    Article  Google Scholar 

  47. C.H. Papadimitriou, Computational Complexity (Addison-Wesley, New York, 1994)

    MATH  Google Scholar 

  48. C.H. Papadimitriou, D. Wolfe, The complexity of facets resolved, J. Comput. Syst. Sci. 37, 2–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Park, W. Wu, Z. Liu, X. Wu, H.G. Zhao, DNA screening, pooling design and simplicial complex. J. Comb. Optim. 7, 389–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Porat, A. Rothschild, Explicit non-adaptive combinatorial group testing schemes, in Proceedings of the 35th International Colloquium on Automata, Languages and Programming, Reykjavik, Iceland, 2008, pp. 748–759

    Google Scholar 

  51. S. Rahmann, Rapid large-scale oligonucleotide selection for microarrays, in Proceedings of the 1st IEEE Computer Society Conference on Bioinformatics (CSB’ 02), Stanford, CA, USA, 2002, pp. 54–63

    Google Scholar 

  52. S. Rahmann, Fast and sensitive probe selection for DNA chips using jumps in matching statistics, in Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference (CSB’ 03), Stanford, CA, USA, 2003, pp. 57–64

    Google Scholar 

  53. M. Ruszinkó, On the upper bound of the size of the r-cover-free families. J. Comb. Theory Ser. A 66, 302–310 (1994)

    Article  MATH  Google Scholar 

  54. A. Schliep, D.C. Torney, S. Rahmann, Group testing with DNA chips: generating designs and decoding experiments, in Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference (CSB’ 03), Stanford, CA, USA, 2003, pp. 84–93

    Google Scholar 

  55. C. Umans, The minimum equivalent DNF problem and shortest implicants, in Proceedings of 39th IEEE Symposium on Foundation of Computer Science, Palo Alto, CA, USA, 1998, pp. 556–563

    Google Scholar 

  56. X. Wang, B. Seed, Selection of oligonucleotide probes for protein coding sequences. Bioinformatics 19, 796–802 (2003)

    Article  Google Scholar 

  57. J.K. Wolf, Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory IT-31, 185–191 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Cheng, Y. (2013). Advances in Group Testing. In: Pardalos, P., Du, DZ., Graham, R. (eds) Handbook of Combinatorial Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7997-1_71

Download citation

Publish with us

Policies and ethics