Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 386 Accesses

The continent of Antarctica is currently 98% covered by two connected continental-scale ice sheets plus smaller ice caps and glaciers of the Antarctic Peninsula. The history and behavior of the two large ice sheets, the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet (WAIS) (Figure A15) have had a major influence on Earth’s past climate. The waxing and waning of Antarctica’s ice sheets are strongly tied to global sea levels and climate change, ocean circulation patterns, Earth’s albedo and life on the planet.

Figure A15
figure 15_9

Antarctic place names along with ice shelves shown in gray. WAIS, West Antarctic Ice Sheet; EAIS, East Antarctic Ice Sheet; AP, Antarctic Peninsula; PB, Prydz Bay; TAM, Transantarctic Mountains; CRP, Cape Roberts Project site; PIB, Pine Island Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson, J.B., 1999. Antarctic Marine Geology. Cambridge, UK: Cambridge University Press, 289pp.

    Google Scholar 

  • Anderson, J.B., Shipp, S.S., Lowe, A.L., Smith Wellner, J., and Mosola, A., 2002. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quaternary Sci. Rev., 21, 49–70.

    Article  Google Scholar 

  • Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J.T., DeMaster, D.J., and Jennings, A.E., 1999. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Res., 52, 206–216.

    Article  Google Scholar 

  • Barker, P.F., and Thomas, E., 2003. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Sci. Rev., 66, 143–162.

    Article  Google Scholar 

  • Bart, P.J., 2001. Did the Antarctic Ice Sheets expand during the early Pliocene? Geology, 29, 67–70.

    Article  Google Scholar 

  • Bart, P.J., 2003. Were West Antarctic Ice Sheet grounding events in the Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene? Earth and Planetary Sci. Lett., 216, 93–107.

    Article  Google Scholar 

  • Bentley, M.J., 1999. Volume of the Antarctic ice at the last glacial maximum, and its impact on global sea level change. Quaternary Sci. Rev., 18, 1569–1595.

    Article  Google Scholar 

  • Berkman, P.A. and Forman, S.L., 1996. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean. Geophys. Res. Lett., 23, 363–366.

    Article  Google Scholar 

  • Canals, M., Urgeles, R., and Calafat, A.M., 2000. Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology, 28, 31–34.

    Article  Google Scholar 

  • Cape Roberts Science Team, 1999. Initial report on CRP-2/2A, Cape Roberts Drilling Project, Antarctica. Terra Antarctica, 6(1/2), 173.

    Google Scholar 

  • Clark, P.U., Alley, R.B., Keigwin, L.D., Licciardi, J.M., Johnsen, S.J., and Wang, H., 1996. Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.

    Article  Google Scholar 

  • Conway, H.W., Hall, B.L., Denton, G.H., Gades, A.M., and Waddington, E.D., 1999. Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science, 286, 280–286.

    Article  Google Scholar 

  • Cooper, A.D., and O’Brien, P.E., 2004. Leg 188 Synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In Cooper, A.K., O’Brien, P.E., and Richter C. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 188, http://wwwodp. tamu.edu/publications/188_SR/synth/synth.htm.

  • DeConto, R.M., and Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245–249.

    Article  Google Scholar 

  • Denton, G.H., and Marchant, D.R., 2000. The Geologic Basis for a Reconstruction of a Grounded Ice Sheet in McMurdo Sound, Antarctica, at the Last Glacial Maximum. Geografiska Annaler, A 82, 167–211.

    Article  Google Scholar 

  • Denton, G. H., Bockheim, J. G., Wilson, S. C., and Stuiver, M., 1989. Late Wisconsin and Early Holocene Glacial History, Inner Ross Embayment, Antarctica. Quaternary Res., 31, 151–182.

    Article  Google Scholar 

  • De Santis, L., Anderson, J.B., Brancolini, G., and Zayatz, I., 1995. Seismic record of late Oligocene through Miocene glaciation on the central and eastern continental shelf of the Ross Sea. In Cooper, A.K., Barker, P.F., and Brancolini, G. (eds.), Geology and Seismic Stratigraphy of the Antarctic Margin, Antarctic Research Series 68. Washington, D.C: American Geophysical Union, pp. 235–260.

    Google Scholar 

  • Domack, E.W., Jull, A.J.T., and Donahue, D.J., 1991. Holocene chronology for the unconsolidated sediments at Hole 740A: Prydz Bay, East Antarctica. In Barron, J., Larsen, B., et al. (eds.), Proceedings of the Ocean Drilling Program Scientific Results, 119, 1–7.

    Google Scholar 

  • Domack, E.W., Jacobsen, E.A., Shipp, S.S., and Anderson, J.B., 1999. Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: A new perspective. Part 2: Sedimentologic and stratigraphic signature. Geological Soc. Am. Bull., 111, 1517–1536.

    Article  Google Scholar 

  • Dowdeswell, J.A., Ó Cofaigh, C., and Pudsey, C., 2004. Thickness and extent of the subglacial till layer beneath an Antarctic paleo-ice stream. Geology, 32, 13–16.

    Article  Google Scholar 

  • EPICA community members, 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628.

    Google Scholar 

  • Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas even and deep-ocean circulation. Nature, 342, 637–642.

    Article  Google Scholar 

  • Farmer, G.L., Licht, K., Andrews, J.T., and Swope, R.J., 2006. Isotopic constraints on the provenance of five-grained sediment in LGM till from the Ross Embayment, Antarctica. Earth and Planetary Science Letters, v. 249, pp. 90–107.

    Google Scholar 

  • Gordon, J.E., and Harkness, D.D., 1992. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: Implications for reservoir corrections in radiocarbon dating. Quaternary Sci. Rev., 11, 697–708.

    Article  Google Scholar 

  • Hall, B.L., and Denton, G.H., 1999. New relative sea-level curves for the southern Scott Coast, Antarctica: Evidence for Holocene deglaciation of the western Ross Sea. J. Quaternary Sci., 14, 641–650.

    Article  Google Scholar 

  • Hambrey, M.J., 1993. Cenozoic sedimentary and climatic record, Ross Sea region, Antarctica. In Kennett J.P., and Warnke, D.A. (eds.), The Antarctic Paleoenvironment: A Perspective on Global Change II. Antarctic Research Series 60. Washington, D.C: American Geophysical Union, pp. 91–124.

    Google Scholar 

  • Hambrey, M.J., and McKelvey, B.C., 2000. Major Neogene fluctuations of the east Antarctic Ice Sheet: Stratigraphic evidence from the Lambert Glacier region. Geology, 28, 887–890.

    Article  Google Scholar 

  • Hayes, D.E, and Frakes, L.A., 1975. General Synthesis, Deep Sea Drilling Project 28. In Hays, D.E., and Frakes, L.A. (eds.), Initial Rep. Deep Sea Drilling Proj., 28, 919–942.

    Google Scholar 

  • Ingólfsson, Ó., Hjort, C., Berkman, P.A., Björk, S., Colhoun, E., Goodwin, I., Hall, B., Hirakawa, K., Melles, M., Möller, P., and Prentice, M., 1998. Antarctic glacial history since the Last Glacial Maximum: An overview of the record on land. Antarct. Sci., 10, 326–244.

    Article  Google Scholar 

  • Latimer, J.C., and Filippelli, G.M., 2002. Eocene to Miocene terrigenous inputs and export production: Geochemical evidence from ODP Leg 177, Site 1090. Palaeogeogr., Palaeoclimatol., Palaeoecol., 182, 151–164.

    Article  Google Scholar 

  • Lawver, L.A., Gahagan, L.M., and Coffin, M.F., 1992. The development of paleoseaways around Antarctica. In Kennett J.P., and Warnke, D.A. (eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarctic Research Series 60. Washington, D.C: American Geophysical Union, pp. 7–30.

    Google Scholar 

  • Licht, K.J., 2004. Antarctica’s contribution to eustatic sea level during meltwater pulse – 1A. Sediment. Geol., 165, 343–353.

    Article  Google Scholar 

  • Licht, K.J., and Andrews, J.T., 2002. The 14C Record of Late Pleistocene ice advance and retreat in the central Ross Sea, Antarctica. Arctic, Antarct. Alpine Res., 34, 324–333.

    Article  Google Scholar 

  • Licht, K.J., Jennings, A.E., Andrews, J.T., and Williams, K.M., 1996. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology, 24, 223–226.

    Article  Google Scholar 

  • Licht, K.J., Lederer, J.R., and Swope, R.J., 2005. Provenance of LGM Glacial Till (sand fraction) across the Ross Embayment, Antarctica. Quaternary Sci. Rev., 24, 1499–1520.

    Article  Google Scholar 

  • Lythe, M.B., Vaughan, D.G., and the BEDMAP Consortium. 2000. BEDMAP – bed topography of the Antarctic, 1:10,000,000 scale map. BAS (Misc) 9. Cambridge, UK: British Antarctic Survey.

    Google Scholar 

  • Ng, F., Hallet, B. Sletten, R., and Stone, J.O., 2005. Fast-growing till over ancient ice in Beacon Valley, Antarctica. Geology, 33, 121–134.

    Google Scholar 

  • O’Brien, P.E., and Harris, P.T., 1996. Patterns of glacial erosion and deposition in Prydz Bay and the past behavior of the Lambert Glacier. R. Soc. Tasmania Pap. Proc., 130, 79–86.

    Google Scholar 

  • Pudsey, C.J., Barker, P.F., and Larter, R.D., 1994. Ice sheet retreat from the Antarctic Peninsula Shelf. Continental Shelf Res., 14, 1647–1675.

    Article  Google Scholar 

  • Rignot, E.J., 1998. Fast Recession of a West Antarctic Glacier. Science, 281, 549–551.

    Article  Google Scholar 

  • Rott, H., Skvarca, P., and Nagler, T., 1996. Rapid collapse of the Larsen Ice Shelf, Antarctica. Science, 271, 788–792.

    Article  Google Scholar 

  • Scherer, R.P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H., and Kamb, B., 1998. Pleistocene collapse of the West Antarctic Ice Sheet. Science, 281, 82–85.

    Article  Google Scholar 

  • Shackleton, N.J., and Kennett, J.P., 1975. Paleotemperature history of the Cainozoic and the initiation of Antarctic glaciation: Oxygen and carbon analyses in DSDP sites 277, 279, and 281. Initial Rep. Deep Sea Drilling Proj., 29, 743–755.

    Google Scholar 

  • Shipboard Scientific Party, 1999. Leg 178 Summary. Proc. Ocean Drilling Program, Initial Rep. 178, 1–60.

    Google Scholar 

  • Shipboard Scientific Party, 2000. Leg 189 Preliminary Report: The Tasmanian Seaway between Australia and Antarctica – Paleoclimate and paleoceanography. ODP Preliminary Report 89 (online).

    Google Scholar 

  • Shipp, S.S., Anderson, J.B., and Domack, E.W., 1999. Late Pleistocene – Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: A new perspective. Part 1: Geophysical results. Geological Soc. Am. Bull., 111, 1486–1516.

    Article  Google Scholar 

  • Steig, E.J., Fastook, J.L., Zweck, C., Goodwin, I.D., Licht, K.J., White, J.W.C., and Ackert, Jr., R.P., 2001. West Antarctic Ice Sheet elevation changes. In Alley, R.B., and Bindschadler, R.A. (eds.), The West Antarctic Ice Sheet: Behavior and Environment. Antarctic Research Series. Washington, DC: American Geophysical Union, 77, 75–90.

    Google Scholar 

  • Sugden, D.E., Marchant, D.R., and Denton, G.H. (eds.) 1993. The case for a stable East Antarctic Ice Sheet. Geografiska Annaler, 75A, 151–351.

    Google Scholar 

  • Sugden, D.E., Marchant, D.R., Potter, N. Jr., Souchez, R.A., Denton G.H., Swisher, C.C., and Tison, J.-L., 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412–414.

    Article  Google Scholar 

  • Taylor, K.C., White, J.W.C., Severinghaus, J.P., Brook, D.J., Mayewski, P.A., Alley, R.B., Steig, E.J., Spencer, M.K., Meyerson, E., Meese, D.A., Lamorey, G.W., Grachev, A., Gow, A.J., and Barnett, B.A., 2004. Abrupt climate change around 22 ka on the Siple Coast of Antartica. Quaternary Sci. Rev., 23, 7–15.

    Article  Google Scholar 

  • Webb, P.N., Harwood, D.M., McKelvey, B.C., Mercer, J.H., and Stott, L.D., 1984. Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton. Geology, 12, 287–291.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to present. Science, 292, 686–693.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Licht, K. (2009). Antarctic Glaciation History. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_9

Download citation

Publish with us

Policies and ethics