Skip to main content

40Ar/39Ar and K–Ar Geochronology

  • Reference work entry
  • First Online:
Encyclopedia of Geoarchaeology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Ar–Ar dating; Argon–argon dating; K–Ar dating

Definition

K–Ar geochronology. A geochronometer (geologic dating method) used to date potassium-bearing rocks, based on the decay of parent isotope 40K to daughter isotope 40Ar.

40Ar/39Ar geochronology. A variant of the K–Ar geochronometer, where 39Ar is measured as a proxy for the parent isotope 40K.

Introduction

The K–Ar method and its derivative, the 40Ar/39Ar method, are based on the radioactive decay of 40K to the noble gas 40Ar (sometimes symbolically indicated as 40Ar*, or radiogenic Ar). Potassium (K) is a major element in the Earth’s crust and is abundant in many rocks and minerals. It possesses two stable isotopes: 39K (93 %) and 41K (7 %). After some early indications that a radioactive isotope of potassium of mass 40 might exist (for details see McDougall and Harrison, 1999, and references therein), it was definitively identified by Nier (1935). It was not until later that rocks enriched in 40Ar were identified and the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aldrich, L. T., and Nier, A. O., 1948. Argon 40 in potassium minerals. Physical Review, 74(8), 876–877.

    Article  Google Scholar 

  • Beckinsale, R. D., and Gale, N. H., 1969. A reappraisal of the decay constants and branching ratio of 40K. Earth and Planetary Science Letters, 6(4), 289–294.

    Article  Google Scholar 

  • Evernden, J. F., and Curtis, G. H., 1965. The potassium-argon dating of late Cenozoic rocks in East Africa and Italy. Current Anthropology, 6(4), 342–385.

    Article  Google Scholar 

  • Fitch, F. J., and Miller, J. A., 1970. New hominid remains and early artefacts from northern Kenya: radioisotope age determinations of Lake Rudolf artefact site. Nature, 226(5242), 226–228.

    Article  Google Scholar 

  • Fitch, F. J., Findlater, I. C., Watkins, R. T., and Miller, J., 1974. Dating of the rock succession containing fossil hominids at East Rudolf, Kenya. Nature, 215(5472), 213–215.

    Article  Google Scholar 

  • Fitch, F. J., Hooker, P. J., and Miller, J. A., 1976. 40Ar/39Ar dating of the KBS tuff in Koobi Fora formation, East Rudolf, Kenya. Nature, 263(5580), 740–744.

    Article  Google Scholar 

  • Hicks, A., Barclay, J., Mark, D. F., and Loughlin, S., 2012. Tristan da Cunha: constraining eruptive behavior using the 40Ar/39Ar dating technique. Geology, 40(8), 723–726.

    Article  Google Scholar 

  • Jourdan, F., Matzel, J. P., and Renne, P. R., 2007. 39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase. Geochimica et Cosmochimica Acta, 71(11), 2791–2808.

    Article  Google Scholar 

  • Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R., 2008. Synchronizing rock clocks of Earth history. Science, 320(5875), 500–504.

    Article  Google Scholar 

  • Lanphere, M. A., and Dalrymple, G. B., 1966. Simplified bulb tracer system for argon analyses. Nature, 209(5026), 902–903.

    Article  Google Scholar 

  • Lee, J.-Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H.-S., Lee, J. B., and Kim, J. S., 2006. A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et Cosmochimica Acta, 70(17), 4507–4512.

    Article  Google Scholar 

  • McDougall, I., 1981. 40Ar/39Ar age spectra from the KBS Tuff, Koobi Fora Formation. Nature, 294(5837), 120–124.

    Article  Google Scholar 

  • McDougall, I., and Harrison, T. M., 1999. Geochronology and Thermochronology by the40Ar/39Ar Method, 2nd edn. New York: Oxford University Press.

    Google Scholar 

  • McDougall, I., and Roksandic, Z., 1974. Total fusion 40Ar/39Ar ages using HIFAR reactor. Journal of the Geological Society of Australia, 21(1), 81–89.

    Article  Google Scholar 

  • McDougall, I., and Wellman, P., 2011. Calibration of GA1550 biotite standard for K/Ar and 40Ar/39Ar dating. Chemical Geology, 280(1–2), 19–25.

    Article  Google Scholar 

  • McDougall, I., Maier, R., Sutherland-Hawkes, P., and Gleadow, A. J. W., 1980. K–Ar age estimate for the KBS Tuff, East Turkana, Kenya. Nature, 284(5753), 230–234.

    Article  Google Scholar 

  • Merrihue, C., and Turner, G., 1966. Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71(11), 2852–2857.

    Article  Google Scholar 

  • Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R., 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochimica et Cosmochimica Acta, 64(1), 73–98.

    Article  Google Scholar 

  • Morgan, L. E., and Renne, P. R., 2008. Diachronous dawn of Africa’s Middle Stone Age: new 40Ar/39Ar ages from the Ethiopian Rift. Geology, 36(12), 967–970.

    Article  Google Scholar 

  • Morgan, L. E., Renne, P. R., Taylor, R. E., and WoldeGabriel, G., 2009. Archaeological age constraints from extrusion ages of obsidian: examples from the Middle Awash, Ethiopia. Quaternary Geochronology, 4(3), 193–203.

    Article  Google Scholar 

  • Morgan, L. E., Renne, P. R., Kieffer, G., Piperno, M., Gallotti, R., and Raynal, J. P., 2012. A chronological framework for a long and persistent archaeological record: Melka Kunture, Ethiopia. Journal of Human Evolution, 62(1), 104–115.

    Article  Google Scholar 

  • Nier, A. O., 1935. Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48(3), 283–284.

    Article  Google Scholar 

  • Nier, A. O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77(6), 789–793.

    Article  Google Scholar 

  • Nomade, S., Renne, P. R., Vogel, N., Deino, A. L., Sharp, W. D., Becker, T. A., Jaouni, A. R., and Mundil, R., 2005. Alder Creek sanidine (ACs-2): a quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event. Chemical Geology, 218(3–4), 315–338.

    Article  Google Scholar 

  • Paine, J. H., Nomade, S., and Renne, P. R., 2006. Quantification of 39Ar recoil ejection from GA1550 biotite during neutron irradiation as a function of grain dimensions. Geochimica et Cosmochimica Acta, 70(6), 1507–1517.

    Article  Google Scholar 

  • Renne, P. R., 2014. Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. Geological Society, London, Special Publications, 378, 21–31.

    Article  Google Scholar 

  • Renne, P. R., Sharp, W. D., Deino, A. L., Orsi, G., and Civetta, L., 1997. 40Ar/39Ar dating into the historical realm: calibration against Pliny the Younger. Science, 277(5330), 1279–1280.

    Article  Google Scholar 

  • Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., and DePaolo, D. J., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1–2), 117–152.

    Article  Google Scholar 

  • Renne, P. R., Deino, A. L., Hames, W. E., Heizler, M. T., Hemming, S. R., Hodges, K. V., Koppers, A. A. P., Mark, D. F., Morgan, L. E., Phillips, D., Singer, B. S., Turrin, B. D., Villa, I. M., Villeneuve, M., and Wijbrans, J. R., 2009. Data reporting norms for 40Ar/39Ar geochronology. Quaternary Geochronology, 4(5), 346–352.

    Article  Google Scholar 

  • Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R., 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74(18), 5349–5367.

    Article  Google Scholar 

  • Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K., 2011. Response to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology”. Geochimica et Cosmochimica Acta, 75(17), 5097–5100, doi:10.1016/j.gca.2011.06.021.

    Article  Google Scholar 

  • Sahle, Y., Hutchings, W. K., Braun, D. R., Sealy, J. C., Morgan, L. E., Negash, A., and Atnafu, B., 2013. Earliest stone-tipped projectiles from the Ethiopian Rift date to >279,000 years ago. PLoS One, 8(11), e78092.

    Article  Google Scholar 

  • Sahle, Y., Morgan, L. E., Braun, D. R., Atnafu, B., and Hutchings, W. K., 2014. Chronological and behavioral contexts of the earliest Middle Stone Age in the Gademotta Formation, Main Ethiopian Rift. Quaternary International, 331, 6–19.

    Article  Google Scholar 

  • Steiger, R. H., and Jäger, E., 1977. Subcommission on geochronology: convention on use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362.

    Article  Google Scholar 

  • Wendorf, F., and Schild, R., 1974. A Middle Stone Age Sequence from the Central Rift Valley, Ethiopia. Wrocław: Zakład Narodowy im. Ossolińskich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah E. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Morgan, L.E. (2017). 40Ar/39Ar and K–Ar Geochronology. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_45

Download citation

Publish with us

Policies and ethics