Skip to main content

Analysis of Carbon, Nitrogen, pH, Phosphorus, and Carbonates as Tools in Geoarchaeological Research

  • Reference work entry
  • First Online:
Encyclopedia of Geoarchaeology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Introduction

In the context of archaeological research soil/deposit chemical analysis should be viewed as an additional data set or tool for interpreting the archaeological record. Because chemical signatures are not exclusively anthropogenic (they are not uniquely of human construction like artifacts), there is always a non-anthropogenic component or effect. Human activity either indirectly modifies a soil’s chemical characteristic, as with pH, or it directly adds or subtracts material creating an anomaly by altering the amount of carbon, phosphorus, nitrogen, or carbonates in the deposits. Anomalies can only be detected if there is baseline data that characterizes the deposits prior to human intervention. This is accomplished by setting up control sampling locations or, if that is not possible, obtaining background data from preexisting sources (e.g., from sources like Shacklette and Boerngen, 1984). Interpretation of chemical data in archaeological contexts involves comparisons to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adler, C. J., Haak, W., Donlon, D., and Cooper, A., 2011. Survival and recovery of DNA from ancient teeth and bones. Journal of Archaeological Science, 38(5), 956–964.

    Article  Google Scholar 

  • Ahler, S. A., 1973. Chemical analysis of deposits at Rogers Rock Shelter, Missouri. Plains Anthropologist, 18, 116–131.

    Google Scholar 

  • Asouti, E., and Austin, P., 2005. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environmental Archaeology, 10, 1–18.

    Article  Google Scholar 

  • Bakkevig, S., 1980. Phosphate analysis in archaeology-problems and recent progress. Norwegian Archaeological Review, 13, 73–100.

    Article  Google Scholar 

  • Barba, L., 2007. Chemical residues in lime-plastered archaeological floors. Geoarchaeology, 22, 439–452.

    Article  Google Scholar 

  • Barba, L. A., Ortiz, A., Link, K. F., López Lujan, L., and Lazos, L., 1996. The chemical analysis of residues in floors and the reconstruction of ritual activities at the temple Mayor, Mexico. In Archaeological Chemistry: Organic, Inorganic and Biochemical Analysis. Washington, DC: Chemical Society of America, pp. 139–156.

    Chapter  Google Scholar 

  • Birkeland, P. W., 1984. Soils and Geomorphology. New York: Oxford University Press.

    Google Scholar 

  • Boul, S. W., Hole, F. D., and Mc Cracken, R. J., 1989. Soil Genesis and Classification, 3rd edn. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Braadbaart, F., Poole, I., and van Brussel, A. A., 2009. Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. Journal of Archaeological Science, 36(8), 1672–1679.

    Article  Google Scholar 

  • Brady, N. C., 1974. The Nature and Properties of Soil, 8th edn. New York: MacMillan.

    Google Scholar 

  • Bremner, J. M., and Mulvaney, C. S., 1982. Nitrogen-total. In Page, A. L. (ed.), Methods of Soil Analysis. Part 2: Chemical and Biological Properties. Madison, WI: Soil Science Society of America. Agronomy Monograph, Vol. 9, pp. 595–624.

    Google Scholar 

  • Cabanes, D., Gadot, Y., Cabanes, M., Finkelstein, I., Weiner, S., Shahack-Gross, R., 2011. Stability of Phytoliths in the Archaeological Record: A Dissolution Study of Modern and Fossil Phytoliths. Journal of Archaeological Science, 38, 2480–2490.

    Google Scholar 

  • Carr, C., 1982. Handbook on Soil Resistivity Surveying Interpretation of Data From Earthen Archeological Sites. Evanston, IL: Center for American Archeology Press.

    Google Scholar 

  • Cavanagh, W. G., Hirst, S., and Litton, C. D., 1988. Soil phosphate, site boundaries, and change point analysis. Journal of Field Archaeology, 15, 67–83.

    Google Scholar 

  • Cook, S. F., and Heizer, R. F., 1965. Studies on the Chemical Analysis of Archaeological Sites. Berkeley, CA: University of California Press. University of California Publications in Anthropology, Vol. 2.

    Google Scholar 

  • Courty, M. A., Goldberg, P., and Macphail, R., 1989. Soils and Micromorphology in Archaeology. Cambridge: Cambridge University Press. Cambridge Manuals in Archaeology.

    Google Scholar 

  • Davidson, D. A., 1973. Particle-size and phosphate analysis- evidence for the evolution of a tell. Archaeometry, 15, 143–152.

    Article  Google Scholar 

  • Dean, W. E. J., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition: comparisons with other methods. Journal of Sedimentary Petrology, 44, 242–248.

    Google Scholar 

  • Dufraisse, A. (ed.), 2006. Charcoal Analysis: New Analytical Tools and Methods for Archaeology. British Archaeologcial Report 1483. Oxford, England: Archaeopress.

    Google Scholar 

  • Dunning, N. P., 1993. Ancient maya anthrosols: soil phosphate testing and land-use. In Timpson, M. E., Foss, J. E., and Morris, M. W. (eds.), Proceedings of the First International Conference on Pedo-Archaeology. Knoxville, TN: University of Tennessee Agricultural Experiment Station. Special Publication 93–03, pp. 203–210.

    Google Scholar 

  • Eidt, R. C., 1973. A rapid chemical field test for archaeological site survey. American Antiquity, 38, 206–210.

    Article  Google Scholar 

  • Eidt, R. C., 1977. Detection and examination of anthrosols by phosphate analysis. Science, 197, 1327–1333.

    Article  Google Scholar 

  • Eidt, R. C., 1985. Theoretical and practical considerations in the analysis of anthrosols. In George, R., Jr., and Gifford, J. A. (eds.), Archaeological Geology. New Haven, CT: Yale University Press, pp. 155–190.

    Google Scholar 

  • Entwistle, J. A., Abrahams, P. W., and Dodgshon, R. A., 2000. The geoarchaeological significance and spatial variability of a range of physical and chemical soil properties from a former habitation site, Isle of Skye. Journal of Archaeological Science, 27, 287–303.

    Article  Google Scholar 

  • Fernández, F. G., Terry, R. E., Inomata, T., and Eberl, M., 2002. An ethnoarchaeological study of chemical residues in the floors and soils of Q’eqchi’ Maya houses at Las Pozas, Guatemala. Geoarchaeology, 17(6), 487–519.

    Article  Google Scholar 

  • Glaser, B., and Woods, W. I. (eds.), 2004. Amazonian Dark Earths: Explorations in Time and Space. Berlin: Springer.

    Google Scholar 

  • Gordon, C. C., and Buikstra, J. E., 1981. Soil pH, bone preservation, and sampling bias at mortuary sites. American Antiquity, 46, 566–571.

    Article  Google Scholar 

  • Gundlach, H., 1961. Tüpfelmethode auf Phosphat, angewandt in prähistorischer Forschung (als Feldmethode). Mikrochimica Acta, 5, 735–737.

    Article  Google Scholar 

  • Holliday, V. T., 1994. The “State Factor” approach in geoarchaeology. In Amundson, R., Harden, J., and Singer, M. (eds.), Factors of Soil Formation: A Fiftieth Anniversary Retrospective. Madison, WI: Soil Science Society of America. Special Publication Number 33.

    Google Scholar 

  • Holliday, V. T., 2004a. Soils in Archaeological Research. New York: Oxford University Press.

    Google Scholar 

  • Holliday, V. T., 2004b. Appendix 2: soil phosphorous chemistry, analytical methods, and chronosequences. In Holliday, V. T. (ed.), Soils in Archaeological Research. New York: Oxford University Press, pp. 342–362.

    Google Scholar 

  • Holliday, V. T., Stein, J. K., and Gartner, W. G., 2004c. Appendix 3: variability of soil laboratory procedures and results. In Holliday, V. T. (ed.), Soils in Archaeological Research. New York: Oxford University Press, pp. 363–374.

    Google Scholar 

  • Holliday, V. T., and Gartner, W. G., 2007. Methods of soil P analysis in archaeology. Journal of Archaeological Science, 34(2), 301–333.

    Article  Google Scholar 

  • Holliday, V. T., and Stein, J. K., 1989. Variability in laboratory procedures and results in geoarchaeology. Geoarchaeology, 4, 347–358.

    Article  Google Scholar 

  • Homberg, J. A., Sandor, J., and Norton, J. B., 2005. Anthropogenic influences on Zuni agricultural soils. Geoarchaeology, 20, 661–694.

    Article  Google Scholar 

  • Hooke, R. L. B., Martin-Duque, J. F., and Pedraza, J., 2012. Land transformations by humans: a review. GSA Today, 22, 4–10.

    Article  Google Scholar 

  • Janitzky, M. J., 1986. Determination of soil pH. In Singer, M. J., and Janitzky, P. (eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. Washington, DC: United States Government Printing Office. pp. 19–20

    Google Scholar 

  • Jenny, H., 1941. Factors of Soil Formation A System of Quantitative Pedology. New York: McGraw-Hill.

    Google Scholar 

  • Katina, L. T., 1992. Phosphate fractionation of soils at Agroal, Portugal. American Antiquity, 57, 495–506.

    Article  Google Scholar 

  • Kerr, J.P., 1995. Phosphate imprinting within mound a at the Huntsville site. In Collins, M.E., Carter, B. J., Gladfelter, B. G., and Southard, R. J. (eds.), Pedological Perspectives in Archaeological Research. Madison, WI: Soil Science Society of America. Special Publication No. 44, pp. 133–149.

    Google Scholar 

  • Lippi, R. D., 1988. Paleotopography and phosphate analysis of a buried jungle site in Ecuador. Journal of Field Archaeology, 15, 85–97.

    Google Scholar 

  • Machette, M., 1986. Calcium and magnesium carbonates. In Singer, M. J., and Janitzky, P. (eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. Washington, DC: United States Government Printing Office, pp. 30–32.

    Google Scholar 

  • Marguerie, D., and Hunot, J., 2007. Charcoal analysis and dendrochronology: data from archaeological sites in Northwestern France. Journal of Archaeological Science, 34, 1417–1433.

    Article  Google Scholar 

  • McCann, J. M., Woods, W. I., and Meyer, D. W., 2001. Organic matter and anthrosols in Amazonia: interpreting the Amerindian legacy. In Ball, B., Rees, R. M., Watson, C., and Campbel, C. (eds.), Sustainable Management of Soil Organic Matter. Wallingford, CT: CAB, International, pp. 180–189.

    Google Scholar 

  • McLean, E.O., 1982. Soil pH and lime requirement. In Page, A.L., (ed.), Methods of Soil Analysis. Part 2: Chemical and Biological Properties, Soil Science Society of America. Madison, WI: Soil Science Society of America. Agronomy Monograph No. 9, pp. 199–224.

    Google Scholar 

  • Meixner, R., 1986a. Total phosphorous (extraction). In Singer, M. J., and Janitzky, P. (eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. Washington, DC: United States Government Printing Office, p. 44.

    Google Scholar 

  • Meixner, R., 1986b. Phosphorous fractionation (extraction). In Singer, M. J., and Janitzky, P. (eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. Washington, DC: United States Government Printing Office, p. 44.

    Google Scholar 

  • Meixner, R., 1986c. Phosphorous analysis. In Singer, M. J., and Janitzky, P. (eds.), Field and Laboratory Procedures Used in a Soil Chronosequence Study, Washington, DC: United States Government Printing Office, pp. 45–46.

    Google Scholar 

  • Middleton, W., D., Barba, L., Pecci, A., Burton, J. H., Ortiz, A., Salvini, L., and Suarez, R. R., 2010. The study of archaeologcial floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS. Journal of Archaeological Method and Theory, 17, 183–208.

    Article  Google Scholar 

  • Moskal-del Hoyo, M., Wachowiak, M., and Blanchette, R. A., 2010. Preservation of fungi in archaeological charcoal. Journal of Archaeological Science, 37, 2106–2116.

    Article  Google Scholar 

  • Nelson, R. E., 1982. Carbonate and gypsum. In Page, A. L., (ed.), Methods of Soil Analysis. Part 2: Chemical and Biological Properties, Soil Science Society of America. Madison, WI: Soil Science Society of America. Agronomy Monograph No. 9, pp. 181–197.

    Google Scholar 

  • Nelson, D. W., and Sommers, L. E., 1982. Total carbon, organic carbon, and organic matter. In Page, A. L., (ed.), Methods of Soil Analysis. Part 2: Chemical and Biological Properties, Soil Science Society of America. Madison, WI: Soil Science Society of America. Agronomy Monograph No. 9, pp. 539–579.

    Google Scholar 

  • Nielsen-Marsh, C. M., Smith, C. I., Jans, M. M. E., Nord, A., Kars, H., and Collins, M. J., 2007. Bone diagenesis in the European Holocene II: taphonomic and environmental considerations. Journal of Archaeological Science, 34(9), 1523–1531.

    Article  Google Scholar 

  • Olsen, R. L., and L. E. Sommers. 1982. Phosphorous. In Page, A. L. (ed.), Methods of Soil Analysis. Part 2: Chemical and Biological Properties. Madison, WI: Soil Science Society of America. Agronomy Monograph No. 9, pp. 403–430.

    Google Scholar 

  • Parnell, J. J., Terry, R. E., and Golden, C., 2001. Using in-field phosphate testing to rapidly identify middens at Piedras Negras, Guatemala. Geoarchaeology, 16(8), 855–873.

    Article  Google Scholar 

  • Parnell, J. J., Terry, R. E., and Nelson, Z., 2002. Soil chemical analysis applied as an interpretive tool for ancient human activities in Piedras Negras, Guatemala. Journal of Archaeological Science, 29, 379–404.

    Article  Google Scholar 

  • Pate, F. D., and Hutton, J. T., 1988. The use of soil chemistry data to address post-mortem diagenesis in bone mineral. Journal of Archaeological Science, 15(6), 729–739.

    Article  Google Scholar 

  • Piperno, D., 2006. Phytoliths a Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, MD: AltaMira Press.

    Google Scholar 

  • Proudfoot, B., 1976. The analysis and interpretation of soil phosphorous in archaeological contexts. In Davidson, D. A., and Shackley, M. L. (eds.), Geoarchaeology. Boulder, CO: Westview Press, pp. 94–113.

    Google Scholar 

  • Prychid, C. J., Jabaily, R. S., and Rudall, P. J., 2008. Cellular ultrastructure and crystal development in Amorphophallus (Araceae). Annals of Botany, 101, 983–995.

    Article  Google Scholar 

  • Roberts, T. L., Stewart, J. W. B., and Bettany, J. R., 1985. Influence of topography on the distribution of organic and inorganic soil phosphorous across a narrow environmental gradient. Canadian Journal of Soil Science, 65, 651–665.

    Article  Google Scholar 

  • Roos, C. I., and Nolan, K. C., 2012. Phosphates, plowzones, and plazas: a minimally invasive approach to settlement structure of plowed village sites. Journal of Archaeological Science, 39, 23–32.

    Article  Google Scholar 

  • Sandor, J. A., 1992. Long-term effects of prehistoric agriculture on soils: examples from New Mexico and Peru. In Holliday, V. T. (ed.), Soils in Archaeology Landscape Evolution and Human Occupation. Washington DC: Smithsonian Institution Press, pp. 217–245.

    Google Scholar 

  • Sandor, J. A., Norton, J. B., Homburg, J. A., Muenchrath, D. A., White, C. S., Williams, S. E., Havener, C. I., and Stahl, P. D., 2007. Biogeochemical studies of a Native American runoff agroecosystem. Geoarchaeology, 22(3), 359–386.

    Article  Google Scholar 

  • Schiegl, S., Goldberg, P., Bar-Yosef, O., and Weiner, S., 1996. Ash deposits in hayonim and kebara caves, Israel: microscopic, microscopic, and mineralogic observations, and their archaeological implications. Journal of Archaeological Science, 23, 763–781.

    Article  Google Scholar 

  • Schuldenrein, J., 1995. Geochemistry, phosphate fractionation, and the detection of activity areas at Prehistoric North American Sites. In Collins, M.E., Carter, B. J., Gladfelter, B. G., and Southard, R. J. (eds.), Pedological Perspectives in Archaeological Research. Madison, WI: Soil Science Society of America. Special Publication No. 44, pp. 107–132.

    Google Scholar 

  • Schuman, G. E., Stanley, M. A., and Knudson, D., 1973. Automated total nitrogen analysis of soil and plant samples. Soil Science Society of America Journal, 37, 480–481.

    Article  Google Scholar 

  • Shacklette, H.T., and Boerngen, J. G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous U. S. United States Geological Survey Professional Paper 1270. Washington, DC: United States Government Printing Office.

    Google Scholar 

  • Sheppard, P. J., and Pavlish, L. A., 1992. Weathering of archaeological cherts: a case study from the Solomon Islands. Geoarchaeology, 7, 41–53.

    Article  Google Scholar 

  • Singer, M. J., and Janitzky, P., 1986. Field and Laboratory Procedures Used in a Soil Chronosequence Study. U.S. Geological Survey Bulletin 1648. Washington, DC: United States Government Printing Office.

    Google Scholar 

  • Skinner, S., 1986. Phosphorous as an anthrosol indicator. Midcontinental Journal of Archaeology, 11, 51–78.

    Google Scholar 

  • Soil Science Society of America, 1997. Glossary of Soil Science Terms. Revised Edition. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Sposito, G., 1989. The Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Stein, J. K., 1992. Organic matter in archaeological contexts. In Holliday, V. T. (ed.), Soils in Archaeology Landscape Evolution and Human Occupation. Washington DC: Smithsonian Institution Press, pp. 193–216.

    Google Scholar 

  • Stevenson, F. J., and Coles, M. A., 1999. Cycles of Soil: Carbon, Nitrogen, Phosphorous, Sulfur, and Micronutrients. New York: Wiley.

    Google Scholar 

  • Terry, R. E., Nelson, S. D., Carr, J., Parnell, J., Hardin, P. J., Jackson, M. W., and Houston, S. D., 2000. Quantitative phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala. Geoarchaeology, 15(2), 151–166.

    Article  Google Scholar 

  • Terry, R. E., Fernández, F. G., Parnell, J., and Inomata, T., 2004. The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. Journal of Archaeological Science, 31(9), 1237–1250.

    Article  Google Scholar 

  • Thery-Parisot, I., Chabal, L., and Chrzavzez, J., 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological context. Paleogeography, Paleoclimatology, Paleoecology, 291, 142–153.

    Article  Google Scholar 

  • Thomas, R. L., Sheard, R. W., and Moyer, J. R., 1967. Comparison of conventional and automated procedures for nitrogen, phosphorous, and potassium analysis of plant material using a single digestion. Agronomy Journal, 59, 240–243.

    Article  Google Scholar 

  • Tiessen, H., Stewart, J. W. B., and Cole, C. V., 1984. Pathways of phosphorous transformations in soils of differing pedogenesis. Soil Science Society of America Journal, 48, 853–858.

    Article  Google Scholar 

  • Tylecote, R. F., 1979. The effect of soil conditions on the long-term corrosion of buried Tin-Bronzes and Copper. Journal of Archaeological Science, 6(4), 345–368.

    Article  Google Scholar 

  • Walker, T. W., and Syers, J. K., 1976. The fate of phosphorous during pedogenesis. Geoderma, 15, 1–19.

    Article  Google Scholar 

  • Weiner, S., Goldberg, P., and Bar-Yosef, O., 2002. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archaeological implications. Journal of Archaeological Science, 29, 1289–1308.

    Article  Google Scholar 

  • Wells, E. C., and Terry, R. E., 2007. Introduction. Geoarchaeology, 22(4), 387–390.

    Article  Google Scholar 

  • Wells, E. C., Terry, R. E., Parnell, J. J., Hardin, P. J., Jackson, M. W., and Houston, S. D., 2000. Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. Journal of Archaeological Science, 27, 449–462.

    Article  Google Scholar 

  • White, E. M., 1978. Cautionary note on phosphate data interpretation for archaeology. American Antiquity, 43, 507–508.

    Article  Google Scholar 

  • Woods, W. I., 1975. The Analysis of Abandoned Settlements by a New Phosphate Field Test Method. Norfolk, VA: Chesopiean Archaeological Society.

    Google Scholar 

  • Woods, W. I., 1982. Analysis of soils from the carrier mills archaeological district. In Jefferies, R. W., and Butler, B. M., (eds.), The Carrier Mills Archaeological Project: Human Adaptations in the Saline Valley, Illinois. Carbondale, IL: Center for Archaeological Investigations, Southern Illinois University, Research Paper No. 33, pp. 1381–1407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kolb, M.F. (2017). Analysis of Carbon, Nitrogen, pH, Phosphorus, and Carbonates as Tools in Geoarchaeological Research. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_11

Download citation

Publish with us

Policies and ethics