Skip to main content

Acidity

  • Reference work entry
  • First Online:
Encyclopedia of Soil Science

Soil acidity is a term used to describe acid soils; i.e., soils with a pH value < 7.0 (Gregorich, 2001). When used as a quantitative term, soil acidity is considered a capacity factor and refers to the total acidity contained in a given soil or soil horizon. Soil pH, a measure of the negative logarithm of the hydrogen ion activity in the soil solution, is used as an indicator of the degree of acidity or alkalinity in soil (Table A5). Another term that is sometimes associated with the degree of acidity of a soil as a function of soil pH is soil reaction.

Table A5 Descriptive terms commonly used to describe the degree of acidity or alkalinity of a soil a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adams, F., 1984. Crop response to lime in the southern United States. In Adams, F., ed., Soil Acidity and Liming. Madison: American Society of Agronomy, pp. 211–265.

    Google Scholar 

  • Ågren, G.I., and Bosatta, E., 1988. Nitrogen saturation of terrestrial ecosystems. Environ. Pollut., 54: 87–113.

    Article  Google Scholar 

  • Alva, A.K., Edwards, D.G., Asher, C.J., and Blamey, F.P.C., 1986. Relationships between root length of soybean and calculated activities of aluminum monomers in nutrient solution. Soil Sci. Soc. Am. J., 50: 959–962.

    Article  CAS  Google Scholar 

  • Aneja, V.P., Robarge, W.P., Claiborn, C.S., Murthy, A., Soo‐Kim, D., Li, Z., and Cowling, E.B., 1992. Chemical climatology of high elevation spruce‐fir forests in the southern Appalachian mountains. Environ. Pollut., 75: 89–96.

    Article  CAS  Google Scholar 

  • Baes, C.F., Jr. and Mesmer, R.E., 1976. The Hydrolysis of Cations. New York: John Wiley, p. 489.

    Google Scholar 

  • Barnhisel, R., and Bertsch, P.M., 1982. Aluminum. In Page, A.L., Chair, ed. comm., Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd edn. Madison, WI: Soil Science Society of America, pp. 275–300.

    Google Scholar 

  • Bennet, R.J., and Breen, C.M., 1991. The aluminum signal: new dimensions to mechanisms of aluminum tolerance. Dev. Plant and Soil Sci., 45: 703–715.

    Google Scholar 

  • Berdèn, M., Nilsson, S.I., Rosèn, K., and Tyler, G., 1987. Soil acidification extent, causes and consequences. Rep. No. 3292. Solna, Sweden: National Swedish Environmental Protection Board.

    Google Scholar 

  • Bertsch, P.M., 1989. Aqueous polynuclear aluminum species. In Sposito, G., ed., The Environmental Chemistry of Aluminum. Boca Raton, FL: CRC Press, pp. 87–115.

    Google Scholar 

  • Blevins, R.L., Smith, M.S., Thomas, G.W., and Frye, W.W., 1983. Influence of conservation tillage on soil properties. J. Soil and Water Conserv., 38: 301–305.

    Google Scholar 

  • Bloom, P.R., 1981. Metal‐organic matter interactions in soil. In Dowdy, R.H., Chair, ed. comm., 1981. Chemistry in the Soil Environment. Madsion, WI: Soil Science Society of America, pp. 129–150.

    Google Scholar 

  • Bloom, P.R., and Erich, M.S., 1989. The quantitation of aqueous aluminum. In Sposito, G., ed., The Environmental Chemistry of Aluminum. Boca Raton, FL: CRC Press, pp. 1–27.

    Google Scholar 

  • Bloom, P.R., McBride, M.B., and Weaver, R.M., 1979. Aluminum organic matter in acid soils: buffering and solution aluminum activity. Soil Sci. Soc. Am. J., 43: 448–493.

    Article  Google Scholar 

  • N., van Breemen, 1987. Effects of redox processes on soil acidity. Netherlands J. Agric. Sci., 35: 271–279.

    Google Scholar 

  • Buol, S.W., ed., 1983. Soils of the Southern States and Puerto Rico. Southern Cooperative Series Bulletin 174. Raleigh, NC: North Carolina State University, p. 105.

    Google Scholar 

  • Buol, S.W., 1985. Mineralogy classes in soil families with low activity clays. In Kittrick, J.A., ed., Mineral Classification of Soils. Madison, WI: American Society of Agronomy, pp. 169–178.

    Google Scholar 

  • Cameron, R.W., Ritchie, G.S.P., and Robson, A.D., 1986. Relative toxicities of inorganic aluminum complexes to barley. Soil Sci. Soc. Am. J., 50: 1231–1236.

    Article  CAS  Google Scholar 

  • Clark, R.B., 1984. Physiological aspects of calcium, magnesium and molybdenum deficiencies in plants. In Adams, F., ed., Soil Acidity and Liming. Madison, WI: American Society of Agronomy, pp. 99–170.

    Google Scholar 

  • Driscoll, C.T., and Schecher, W.D., 1990. The chemistry of aluminum in the environment. Environ. Geochem. Health, 12: 28–49.

    Article  CAS  Google Scholar 

  • Fox, R.L., 1980. Soils with variable charge: agronomic and fertility aspects. In Theng, B.K.G., ed., Soils with Variable Charge. Lower Hutt, New Zealand: New Zealand Society of Soil Science, pp. 195–224.

    Google Scholar 

  • Foy, C.D., 1984. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soil. In Adams, F., ed., Soil Acidity and Liming. Madison, WI: American Society of Agronomy, pp. 57–97.

    Google Scholar 

  • Furlani, P.R., Quaggio, J.A., and Gallo, P.B., 1991. Differential responses of sorghum to aluminum in nutrient solution and acid soil. Dev. Plant and Soil Sci., 45: 953–958.

    CAS  Google Scholar 

  • Gregorich, E.G., 2001. Soil and Environmental Science Dictionary. Boca Raton, FL: CRC Press, 577 pp.

    Google Scholar 

  • Gundersen, P., and Rasmussen, L., 1990. Nitrification in forest soils: effects from nitrogen deposition on soil acidification and aluminum release. Rev. Environ. Contam. Toxicol., 113: 1–50.

    Google Scholar 

  • Hardy, D.H., Raper, C.D., Jr., and Miner, G.S., 1990. Chemical restrictions of roots in ultisol subsoils lessened by long‐term management. Soil Sci. Soc. Am. J., 54: 1657–1660.

    Article  CAS  Google Scholar 

  • Hargrove, W.L., and Thomas, G.W., 1981. Effect of organic matter on exchangeable aluminum and plant growth in acid soils. In Dowdy, R.H., Chair, ed. comm., Chemistry in the Soil Environment. Madison, WI: Soil Science Society of America, pp. 151–166.

    Google Scholar 

  • Howeler, R.H., 1991. Identifying plants adaptable to low pH conditions. Dev. Plant and Soil Sci., 45: 885–904.

    CAS  Google Scholar 

  • Irving, P.M., 1983. Acidic precipitation effects on crops: a review and analysis of research. J. Environ. Qual., 12: 442–453.

    Article  CAS  Google Scholar 

  • Islam, A.K., Edwards, D.G., and Asher, C.J., 1980. pH optima for crop growth: results of a flowing solution culture experiment with six species. Plant Soil, 54: 339–357.

    Article  Google Scholar 

  • Johnson, D.W., and Lindberg, S.E., 1989. Acidic deposition on Wallker Branch watershed, In Adriano, D.C., and Havas, M., eds., Acidic Precipitation, Vol. 1. Berlin: Springer‐Verlag, pp. 1–38.

    Chapter  Google Scholar 

  • Johnson, D.W., Cresser, M.S., Nilsson, S.I., Turner, J., Ulrich, B., Binkley, D., and Cole, D.W., 1991. Soil changes in forest ecosystems: evidence for and probable causes. Proc. R. Soc. Edinburgh Sec. B. Biol. Sci., 97: 81–116.

    Google Scholar 

  • Juo, A.S.R., and Kamprath, E.J., 1979. Cooper chloride as an extractant for estimating the potentially reactive aluminum pool in acid soils. Soil Sci. Soc. Am. J., 43: 35–38.

    Article  CAS  Google Scholar 

  • Kamprath, E.J., 1970. Exchangeable aluminum as a criterion for liming leached mineral soils. Soil Sci. Soc. Am. Proc., 24: 252–254.

    Article  Google Scholar 

  • Kamprath, E.J., 1971. Potential detrimental effects from liming highly weathered soils to neutrality. Florida Soil and Crop Sci. Soc. Proc., 31: 200–203.

    Google Scholar 

  • Kamprath, E.J., 1984. Crop response to lime on soils in the tropics. In Adams, F., ed., Soil Acidity and Liming. Madison, WI: American Society of Agronomy, pp. 349–368.

    Google Scholar 

  • Kinraide, T.B., 1991. Identity of the rhizotoxic aluminum species. Dev. Plant and Soil Sci., 45: 717–728.

    Google Scholar 

  • Krug, E.C., and Frink, C.R., 1983. Acid rain on acid soil: a new perspective. Science, 221: 520–525.

    Article  CAS  Google Scholar 

  • Larson, W.E., Holt, R.F., and Carlson, C.W., 1978. Residues for soil conservation. In Lewis, W.M., Chair, ed. comm., Crop Residue Management Systems. Madison, WI: American Society of Agronomy, pp. 1–15.

    Google Scholar 

  • van Lierop, W., 1990. Soil pH and lime requirement determination. In Westerman, R.L., ed., Soil Testing and Plant Analysis. Madison, WI: Soil Science Society of America, pp. 73–126.

    Google Scholar 

  • Magdoff, F.R., and Bartlett, R.J., 1985. Soil pH buffering revisted. Soil Sci. Soc. Am. J., 49: 145–148.

    Article  Google Scholar 

  • Marschner, H., 1991. Mechanisms of adaptation of plants to acid soils. Plant Soil, 134: 1–20.

    CAS  Google Scholar 

  • Matzner, E., 1989. Acidic precipitation: case study Solling. In Adriano, D.C., and Havas, M., eds., Acidic Precipitation, Vol. 1. Berlin: Springer‐Verlag, pp. 39–83.

    Chapter  Google Scholar 

  • McCray, J.M., and Summer, M.E., 1990. Assessing and modifying Ca and Al levels in acid subsoils. Adv. Soil Sci., 14: 45–75.

    Article  Google Scholar 

  • McFee, W.W., Byrnes, W.R., and Stockton, J.G., 1981. Characteristics of coal mine overburden important to plant growth. J. Environ. Qual., 10: 300–308.

    Article  CAS  Google Scholar 

  • McFee, W.W., 1983. Sensitivity ratings of soils to acidic deposition: a review. Environ. Exp. Bot., 23: 203–210.

    Article  CAS  Google Scholar 

  • McLean, E.O., 1978. Principles underlying the practice of determining lime requirements of acid soils by use of buffer methods. Commun. Soil Sci. Plant Anal., 9: 699–715.

    Article  CAS  Google Scholar 

  • Mohnen, V.A., 1992. Atmospheric deposition and pollutant exposure of eastern United States forests. In Eagar, C., and Adams, M.B., eds., Ecology and Decline of Red Spruce in the Eastern United States. New York: Springer‐Verlag, pp. 64–124.

    Chapter  Google Scholar 

  • Moschler, W.W., Martens, D.C., Rich, C.I., and Shear, G.M., 1973. Comparative lime effects on continuous no‐tillage and conventionally tilled corn. Agron. J., 65: 781–783.

    Article  CAS  Google Scholar 

  • Murphy, C.E., Jr., and Sigmon, J.T., 1989. Dry deposition of sulfur and nitrogen oxide gases to forest vegetation. In Lindberg, S.E., Page, A.L., and Norton, S.A., eds., Acidic Precipitation, Vol. 3. Berlin: Springer‐Verlag, pp. 217–240.

    Chapter  Google Scholar 

  • Noble, A.D., Foy, M.V., and Summer, M.E., 1988. Calcium‐aluminum balance and the growth of soybean roots in nutrient solution. Soil Sci. Soc. Am. J., 52: 1651–1656.

    Article  CAS  Google Scholar 

  • Nyatsanga, T., and Pierre, W.H., 1973. Effect of nitrogen fixation by legumes on soil acidity. Agron. J., 65: 936–940.

    Article  CAS  Google Scholar 

  • Oates, J.M., and Kamprath, E.J., 1983. Soil acidity and liming: I. Effect of the extracting solution cation and pH on the removal of aluminum from acid soils. Soil Sci. Soc. Am. J., 47: 687–689.

    Google Scholar 

  • Parfitt, R.L., 1980. Chemical properties of variable charge soils. In Theng, B.K.G., ed., Soils With Variable Charge. Lower Hutt, New Zealand: New Zealand Society of Soil Science, pp. 167–194.

    Google Scholar 

  • Peech, M., 1965. Hydrogen‐ion acitivity. In Black, C.A., ed., Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, WI: American Society of Agronomy, pp. 914–926.

    Google Scholar 

  • Power, J.F., and Legg, J.O., 1978. Effect of crop residues on the soil chemical environment and nutrient availability. In Lewis, W.M., Chair, ed. comm., Crop Residue Management systems. Madison, WI: American Society of Agronomy, pp. 85–100.

    Google Scholar 

  • Reicosky, D.C., Cassel, D.K., Blevins, R.L., Gill, W.R., and Naderman, G.C., 1977. Conservation tillage in the Southeast. J. Soil and Water Conserv., 32: 13–19.

    Google Scholar 

  • Rengel, Z., 2003. Handbook of Soil Acidity. New York: Marcel Dekker, 496 pp.

    Book  Google Scholar 

  • Reuss, J.O., 1991. The transfer of acidity from soils to surface waters. In Ulrich, B., and Summer, M.E., eds., Soil Acidity. Berlin: Springer‐Verlag, pp. 203–217.

    Chapter  Google Scholar 

  • Ritchey, K.D., 1991. Evaluating sweet potato tolerance to aluminum toxicity: comparison of rapid test method and field results. Dev. Plant and Soil Sci., 45: 939–945.

    CAS  Google Scholar 

  • Ritchie, G.S.P., 1989. The chemical behavior of aluminum, hydrogen and manganese in acid soils. In Robson, A.D., ed., Soil Acidity and Plant Growth. Sydney: Academic Press, pp. 1–60.

    Google Scholar 

  • Robarge, W.P., and Johnson, D.W., 1992. The effects of acidic deposition on forested soils. Adv. Agron., 47: 1–83.

    Article  CAS  Google Scholar 

  • Robson, A.D., and Abbott, L.K., 1989. The effect of soil acidity on microbial activity in soils. In Robson, A.D., ed., Soil Acidity and Plant Growth. Sydney: Academic Press, pp. 139–165.

    Google Scholar 

  • Rosenqvist, I.Th., 1978. Alternative sources for acidification of river water in Norway. Sci. Total Environ., 10: 39–49.

    Article  CAS  Google Scholar 

  • Scott, B.J., and Fisher, J.A., 1989. Selection of genotypes tolerant of aluminum and manganese. In Robson, A.D., ed., Soil Acidity and Plant Growth. Sydney: Academic Press, pp. 167–203.

    Google Scholar 

  • Sparks, D.L., 1996. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: Soil Science Society of America, American Society of Agronomy, 1390 pp.

    Google Scholar 

  • Stevenson, F.J., 1982. Humus Chemistry. Genesis, Composition, Reactions. New York: John Wiley, p. 443.

    Google Scholar 

  • Stevenson, F.J., and Vance, G.F., 1989. Naturally occurring aluminum‐organic complexes. In Sposito, G., ed., The Environmental Chemistry of Aluminum. Boca Raton, FL: CRC Press, pp. 117–145.

    Google Scholar 

  • Sumner, M.E., Fey, M.V., and Noble, A.D., 1991. Nutrient status and toxicity problems in acid soils. In Ulrich, B., and Sumner, M.E., eds., Soil Acidity. Berlin: Springer‐Verlag, pp. 149–182.

    Chapter  Google Scholar 

  • Swank, W.T., 1986. Biological control of solute losses from forest ecosystems. In Trudgill, S.T., ed., Solute Processes. New York: John Wiley, pp. 87–139.

    Google Scholar 

  • Tabatabai, M.A., 1985. Effect of acid rain on soils. CRC Crit. Rev. Environ. Control., 15: 65–110.

    Article  CAS  Google Scholar 

  • Tanner, R.L., 1989. Sources of acid, bases, and their precursors in the atmosphere. In Lindberg, S.E., Page, A.L., and Norton, S.A., eds., Acidic Precipitation, Vol. 3, Berlin: Springer‐Verlag, 1–19.

    Chapter  Google Scholar 

  • Taylor, G.J., 1991. Current views of the aluminum stress response; the physiological basis of tolerance. Curr. Top. Plant Dev. Biochem. Phys., 10: 57–93.

    CAS  Google Scholar 

  • Thomas, G.W., 1982. Exchangeable cations. In Page, A.L., Chair, ed. comm., Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd edn. Madison, WI: Soil Science Society of America, pp. 159–165.

    Google Scholar 

  • Thomas, G.W., 1986. Mineral nutrition and fertilizer placement. In Sprague, M.A., and Triplett, G.B., eds., No‐Tillage and Surface‐Tillage Agriculture – The Tillage Revolution. New York: John Wiley, pp. 93–116.

    Google Scholar 

  • Thomas, G.W., 1996. Soil pH and soil acidity. In Sparks D.L., ed., Methods of Soil Analysis. Part 3. Chemical Methods. Madison WI: Soil Science Society of America, American Society of Agronomy, pp. 475–490.

    Google Scholar 

  • Thomas, G.W., and Hargrove, W.L., 1984. The chemistry of soil acidity. In Adams, F., ed., Soil Acidity and Liming. Madison, WI: American Society of Agronomy, pp. 3–56.

    Google Scholar 

  • Tisdale, S.L., Nelson, W.L., and Beaton, J.D., 1985. Soil Fertility and Fertilizers. New York: MacMillan, p. 492.

    Google Scholar 

  • Ulrich, B., 1983. A concept of forest ecosystem stability and of acid deposition as driving force for destabilization. In Ulrich, B., and Pankrath, J., eds., Effects of Accumulation of Air Pollutants in Forest Ecosystems. Dordrecht: D. Reidel, pp. 1–28.

    Chapter  Google Scholar 

  • Ulrich, B., 1991. An ecosystem approach to soil acidification. In Ulrich, B., and Summer, M.E., eds., Soil Acidity. Berlin: Springer‐Verlag, pp. 28–79.

    Chapter  Google Scholar 

  • Ulrich, B., Mayer, R., and Khanna, P.K., 1980. Chemical changes due to acid precipitation in a loess‐derived soil in Central Europe. Soil Sci., 130: 193–199.

    Article  CAS  Google Scholar 

  • Walsh, L.M., and Beaton, J.D., 1973. Soil Testing and Plant Analysis. Madison, WI: Soil Science Society of America, p. 784.

    Google Scholar 

  • Westerman, R.L., ed., 1990. Soil Testing and Plant Analysis. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Yuan, T.B., 1974. A double buffer method for the determination of lime requirement of acid soils. Soil Sci. Soc. Am. J., 38: 437–440.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this entry

Cite this entry

Dahlgren, R.A., Macías, F., Arbestain, M.C., Chesworth, W., Robarge, W.P. (2008). Acidity. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_9

Download citation

Publish with us

Policies and ethics