Skip to main content

Photoacoustic and Thermoacoustic Tomography: Image Formation Principles

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a rapidly emerging imaging technique that holds great promise for biomedical imaging. PAT is a hybrid imaging technique, and can be viewed either as an ultrasound mediated electromagnetic modality or an ultrasound modality that exploits electromagnetic-enhanced image contrast. In this chapter, we provide a review of the underlying imaging physics and contrast mechanisms in PAT. Additionally, the imaging models that relate the measured photoacoustic wavefields to the sought-after optical absorption distribution are described in their continuous and discrete forms. The basic principles of image reconstruction from discrete measurement data are presented, which includes a review of methods for modeling the measurement system response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  1. Anastasio MA, Zhang J, Modgil D, La Riviere PJ (2007) Application of inverse source concepts to photoacoustic tomography. Inverse Prob 23(6):S21–S35

    Article  MATH  Google Scholar 

  2. Anastasio MA, Zhang J, Sidky EY, Zou Y, Xia D, Pan X (2005) Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture. IEEE Trans Med Imaging 24:1100–1112

    Article  Google Scholar 

  3. Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities. In: SPIE, vol 5750. SPIE, pp 298–304

    Google Scholar 

  4. Anastasio MA, Zhang J (2006) Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures. In: Proceedings of the SPIE conference, vol 6086. p 36

    Google Scholar 

  5. Anastasio MA, Zhang J, Pan X (2005) Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneties. In: Proceedings of the SPIE medical imaging conference, vol 5750. pp 298–304

    Google Scholar 

  6. Anastasio MA, Zhang J, Pan X, Zou Y, Keng G, Wang LV (2005) Half-time image reconstruction in thermoacoustic tomography. IEEE Trans Med Imaging 24:199–210

    Article  Google Scholar 

  7. Anastasio MA, Zou Y, Pan X (2002) Reflectivity tomography using temporally truncated data. In: IEEE EMBS/BMES conference proceedings, vol 2. IEEE, pp 921–922

    Google Scholar 

  8. Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Barrett H, Myers K (2004) Foundations of image science. Wiley series in pure and applied optics. Wiley, Hoboken

    Google Scholar 

  10. Beard PC, Laufer JG, Cox B, Arridge SR (2009) Quantitative photoacoustic imaging: measurement of absolute chromophore concentrations for physiological and molecular imaging. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  11. Bertero M, Boccacci P (1998) Inverse problems in imaging. Institute of Physics Publishing, Bristol

    Book  MATH  Google Scholar 

  12. Cheong W, Prahl S, Welch A (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Article  Google Scholar 

  13. Cox BT, Arridge SR, Kstli KP, Beard PC (2006) Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl Opt 45:1866–1875

    Article  Google Scholar 

  14. Devaney AJ (1979) The inverse problem for random sources. J Math Phys 20:1687–1691

    Article  Google Scholar 

  15. Devaney AJ (1983) Inverse source and scattering problems in ultrasonics. IEEE T Son Ultrason 30:355–364

    Article  Google Scholar 

  16. Diebold GJ (2009) Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimension. In: Wang LV (ed) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  17. Diebold GJ, Sun T, Khan MI (Dec 1991) Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett 67(24):3384–3387

    Article  Google Scholar 

  18. Diebold GJ, Westervelt PJ (1988) The photoacoustic effect generated by a spherical droplet in a fluid. J Acoust Soc Am 84(6):2245–2251

    Article  Google Scholar 

  19. Ephrat P, Keenliside L, Seabrook A, Prato FS, Carson JJL (2008) Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J Biomed Opt 13(5): 054052

    Article  Google Scholar 

  20. Esenaliev RO, Karabutov AA, Oraevsky AA (1999) Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 5:981–988

    Article  Google Scholar 

  21. Fessler JA (1994) Penalized weighted least-squares reconstruction for positron emission tomography. IEEE Trans Med Imaging 13:290–300

    Article  Google Scholar 

  22. Fessler JA, Booth SD (1999) Conjugate-gradient preconditioning methods for shiftvariant PET image reconstruction. IEEE Trans Image Process 8(5):688–699

    Article  MathSciNet  MATH  Google Scholar 

  23. Finch D, Haltmeier M, Rakesh (2007) Inversion of spherical means and the wave equation in even dimensions. SIAM J Appl Math 68(2): 392–412

    Google Scholar 

  24. Finch D, Patch S, Rakesh (2004) Determining a function from its mean values over a family of spheres. SIAM J Math Anal 35:1213–1240

    Google Scholar 

  25. Haltmeier M, Scherzer O, Burgholzer P, Paltauf G (2004) Thermoacoustic computed tomography with large planar receivers. Inverse Prob 20(5):1663–1673

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51(24):6437–6448

    Article  Google Scholar 

  27. Joines W, Jirtle R, Rafal M, Schaeffer D (1980) Microwave power absorption differences between normal and malignant tissue. Radiat Oncol Biol Phys 6:681–687

    Article  Google Scholar 

  28. Khokhlova TD, Pelivanov IM, Kozhushko VV, Zharinov AN, Solomatin VS, Karabutov AA (2007) Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl Opt 46(2):262–272

    Article  Google Scholar 

  29. Köstli KP, Beard PC (2003) Two-dimensional photoacoustic imaging by use of fouriertransform image reconstruction and a detector with an anisotropic response. Appl Opt 42(10): 1899–1908

    Article  Google Scholar 

  30. Köstli KP, Frenz M, Bebie H, Weber HP (2001) Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys Med Biol 46(7):1863–1872

    Article  Google Scholar 

  31. Kruger R, Reinecke D, Kruger G (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26:1832–1837

    Article  Google Scholar 

  32. Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Miller KD (2003) Thermoacoustic optical molecular imaging of small animals. Mol Imaging 2:113–123

    Article  Google Scholar 

  33. Kruger RA, Liu P, Fang R, Appledorn C (1995) Photoacoustic ultrasound (PAUS) reconstruction tomography. Med Phys 22:1605–1609

    Article  Google Scholar 

  34. Ku G, Fornage BD, Jin X, Xu M, Hunt KK, Wang LV (2005) Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol Cancer Res Treat 4:559–566

    Google Scholar 

  35. Kuchment P, Kunyansky L (2008) Mathematics of thermoacoustic tomography. Eur J Appl Math 19:191–224

    Article  MathSciNet  MATH  Google Scholar 

  36. Kunyansky LA (2007) Explicit inversion formulae for the spherical mean radon transform. Inverse Prob 23:373–383

    Article  MathSciNet  MATH  Google Scholar 

  37. Langenberg KJ (1987) Basic methods of tomography and inverse problems. Adam Hilger, Philadelphia

    MATH  Google Scholar 

  38. Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys Med Biol 37(3):705–716

    Article  Google Scholar 

  39. Li C, Pramanik M, Ku G, Wang LV (2008) Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys Rev E Stat Nonlinear Soft Matter Phys 77(3):031923

    Article  Google Scholar 

  40. Li C, Wang LV (2009) Photoacoustic tomography and sensing in biomedicine. Phys Med Biol 54(19):R59–R97

    Article  Google Scholar 

  41. Maslov K, Wang LV (2008) Photoacoustic imaging of biological tissue with intensitymodulated continuous-wave laser. J Biomeded Opt 13(2):024006

    Article  Google Scholar 

  42. Wernick MN, Aarsvold JN (2004) Emission tomography, the fundamentals of PET and SPECT. Elsevier, San Diego

    Google Scholar 

  43. Modgil D, Anastasio MA, Wang K, LaRivière PJ(2009) Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation. In: SPIE, vol 7177. p 71771A

    Google Scholar 

  44. Norton S, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: Exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28: 202–220

    Article  Google Scholar 

  45. Oraevsky AA, Jacques SL, Tittel FK (1997) Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl Opt 36:402–415

    Article  Google Scholar 

  46. Oraevsky AA, Karabutov AA (2000) Ultimate sensitivity of time-resolved optoacoustic detection. In: SPIE, vol 3916. pp 228–239

    Article  Google Scholar 

  47. Oraevsky AA, Karabutov AA (2003) Optoacoustic tomography. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton

    Google Scholar 

  48. Paltauf G, Nuster R, Burgholzer P (2009) Characterization of integrating ultrasound detectors for photoacoustic tomography. J Appl Phys 105(10):102026

    Article  Google Scholar 

  49. Paltauf G, Schmidt-Kloiber H, Guss H (1996) Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves. Appl Phys Lett 69(11): 1526–1528

    Article  Google Scholar 

  50. Paltauf G, Viator J, Prahl S, Jacques S (2002) Iterative reconstruction algorithm for optoacoustic imaging. J Acoust Soc Am 112:1536–1544

    Article  Google Scholar 

  51. Pan X, Zou Y, Anastasio MA (2003) Data redundany and reduced-scan reconstruction in reflectivity tomography. IEEE Trans Image Process 12:784–795

    Article  Google Scholar 

  52. Patch SK (2004) Thermoacoustic tomography—consistency conditions and the partial scan problem. Phys Med Biol 49(11):2305–2315

    Article  Google Scholar 

  53. Provost J, Lesage F (2009) The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging 28:585–594

    Article  Google Scholar 

  54. La Riviere PJ, Zhang J, Anastasio MA (2006) Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt Lett 31:781–783

    Article  Google Scholar 

  55. Sushilov NV, Cobbold SC (Apr 2004) Frequency-domain wave equation and its timedomain solutions in attenuating media. J Acoust Soc Am 115(4):1431–1436

    Article  Google Scholar 

  56. Tam AC (1986) Application of photo-acoustic sensing techniques. Rev Mod Phys 58:381–431

    Article  Google Scholar 

  57. Wang LV (ed) (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  58. Wang LV, Wu H-I (2007) Biomedical optics, principles and imaging. Wiley, Hoboken

    Google Scholar 

  59. Wang LV, Zhao XM, Sun HT, Ku G (1999) Microwave-induced acoustic imaging of biological tissues. Rev Sci Instrum 70:3744–3748

    Article  Google Scholar 

  60. Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015

    Article  Google Scholar 

  61. Wang Y, Xie X, Wang X, Ku G, Gill KL, ONeal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4:1689–1692

    Google Scholar 

  62. Xu M, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822

    Article  Google Scholar 

  63. Xu M, Wang LV (2003) Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys Rev E 67: 056605

    Article  Google Scholar 

  64. Xu M, Wang L (2005) Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E 71:016706

    Article  Google Scholar 

  65. Xu M, Wang LV (2006) Biomedical photoacoustics. Rev Sci Instrum 77:041101

    Article  Google Scholar 

  66. Xu Y, Feng D, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography i: planar geometry. IEEE Trans Med Imaging 21:823–828

    Article  Google Scholar 

  67. Xu Y, Wang LV (2003) Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans Ultrason Ferroelectr Freq Control 50:1134–1146

    Article  Google Scholar 

  68. Xu Y, Xu M, Wang LV (2002) Exact frequency-domain reconstruction for thermoacoustic tomography-ii: cylindrical geometry. IEEE Trans Med Imaging 21:829–833

    Article  Google Scholar 

  69. Yuan Z, Jiang H (2006) Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl Phys Lett 88(23):231101

    Article  Google Scholar 

  70. Zhang J, Anastasio MA, Pan X, Wang LV (2005) Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans Med Imaging 24:817–820

    Article  Google Scholar 

  71. Zou Y, Pan X, Anastasio MA (2002) Data truncation and the exterior reconstruction problem in reflection-mode tomography. In: IEEE nuclear science symposium conference record, vol 2. IEEE, pp 726–730

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wang, K., Anastasio, M.A. (2011). Photoacoustic and Thermoacoustic Tomography: Image Formation Principles. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92920-0_18

Download citation

Publish with us

Policies and ethics