Skip to main content

Molecular Tools for Investigating the Gut Microbiota

  • Reference work entry
Prebiotics and Probiotics Science and Technology

Abstract

The “microbial world within us” (Zoetendal et al., 2006) is populated by a complex society of indigenous microorganisms that feature different “ethnic” populations. Those microbial cells thriving within us are estimated to outnumber human body cells by a factor of ten to one. Insights into the relation between the intestinal microbial community and its host have been gained through gnotobiology. Indeed, the influence of the gut microbiota upon human development, physiology, immunity, and nutrition has been inferred by comparing gnotoxenic and axenic murine models (Hooper et al., 1998, 2002, 2003; Hooper and Gordon, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC :

bacterial artificial chromosome

BD :

basal diet

Ct :

cycle threshold

DGGE :

denaturing gradient gel electrophoresis

FISH :

Fluorescence in situ hybridization

FISH-FC :

FISH combined with flow cytometry

FISH-FACS :

FISH-Fluorescence activated cell sorting

HMP :

human microbiome project

MDA :

multiple displacement amplification

MGBs :

minor groove binders

NIH :

National Institutes of Health

OTUs :

operational taxonomic units

PFGE :

pulsed-field gel electrophoresis

qPCR :

quantitative real-time PCR

RDP :

ribosomal database project

RFLP :

restriction fragment length polymorphism

scFOS :

short-chain fructo-oligosaccharide

TGGE :

temporal gradient gel electrophoresis

T-RFLP :

terminal restriction fragment length polymorphism

T-RFs :

terminal restriction fragments

TTGE :

temporal temperature gradient gel electrophoresis

References

  • Amor KB, Breeuwer P, Verbaarschot P, Rombouts FM, Akkermans ADL, De Vos WM, Abee T (2002) Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress. Appl Environ Microbiol 68:5209–5216

    Google Scholar 

  • Apajalahti JH, Kettunen A, Nurminen PH, Jatila H, Holben WE (2003) Selective plating underestimates abundance and shows differential recovery of bifidobacterial species from human feces. Appl Environ Microbiol 69:5731–5735

    CAS  Google Scholar 

  • Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187

    Google Scholar 

  • Balagadde FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140

    CAS  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, Mcmurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    CAS  Google Scholar 

  • Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373

    CAS  Google Scholar 

  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223

    CAS  Google Scholar 

  • De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592

    Google Scholar 

  • Dicksved J, Floistrup H, Bergstrom A, Rosenquist M, Pershagen G, Scheynius A, Roos S, Alm JS, Engstrand L, Braun-Fahrlander C, Von Mutius E, Jansson JK (2007) Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 73:2284–2289

    CAS  Google Scholar 

  • Dinoto A, Suksomcheep A, Ishizuka S, Kimura H, Hanada S, Kamagata Y, Asano K, Tomita F, Yokota A (2006) Modulation of rat cecal microbiota by administration of raffinose and encapsulated Bifidobacterium breve. Appl Environ Microbiol 72:784–792

    CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Google Scholar 

  • Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards CA, Corthier G, Dore J (2006) Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rrna targeted probes. J Microbiol Methods 67:150–161

    CAS  Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226

    CAS  Google Scholar 

  • Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic Press, New York.

    Google Scholar 

  • Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D (2008) Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 4(2):e1000011

    Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rrna-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    CAS  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810

    CAS  Google Scholar 

  • Fuchs BM, Glockner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rrna of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607

    CAS  Google Scholar 

  • Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rrna for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982

    CAS  Google Scholar 

  • Garrido D, Suau A, Pochart P, Cruchet S, Gotteland M (2005) Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiol Lett 248:249–256

    CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    CAS  Google Scholar 

  • Gloux K, Leclerc M, Iliozer H, L’haridon R, Manichanh C, Corthier G, Nalin R, Blottiere HM, Dore J (2007) Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 73:3734–3737

    CAS  Google Scholar 

  • Gueimonde M, Tolkko S, Korpimaki T, Salminen S (2004) New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl Environ Microbiol 70:4165–4169

    CAS  Google Scholar 

  • Haarman M, Knol J (2005) Quantitative real-time PCR assays to identify and quantify fecal bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71:2318–2324

    CAS  Google Scholar 

  • Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11:3–12

    Google Scholar 

  • Harmsen HJ, Raangs GC, He T, Degener JE, Welling GW (2002) Extensive set of 16S rrna-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68:2982–2990

    CAS  Google Scholar 

  • Harmsen HJM, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rrna-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527

    CAS  Google Scholar 

  • Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rdna clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    CAS  Google Scholar 

  • Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, De Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    CAS  Google Scholar 

  • Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20:336–343

    CAS  Google Scholar 

  • Hooper LV Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    CAS  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    CAS  Google Scholar 

  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    CAS  Google Scholar 

  • Huijsdens XW, Linskens RK, Mak M, Meuwissen SG, Vandenbroucke-Grauls CM, Savelkoul PH (2002) Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. J Clin Microbiol 40:4423–4427

    CAS  Google Scholar 

  • Jansen GJ, Wildeboer-Veloo AC, Tonk RH, Franks AH, Welling GW (1999) Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 37:215–221

    CAS  Google Scholar 

  • Jernberg C, Sullivan A, Edlund C, Jansson JK (2005) Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl Environ Microbiol 71:501–506

    CAS  Google Scholar 

  • Kimura K, Mccartney AL, Mcconnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63:3394–3398

    CAS  Google Scholar 

  • Klaassens ES, De Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392

    CAS  Google Scholar 

  • Kumar Y, Westram R, Behrens S, Fuchs B, Glockner FO, Amann R, Meier H, Ludwig W (2005) Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics 6:61

    Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    CAS  Google Scholar 

  • Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rrna-targeted probes and its application in fecal samples. Appl Environ Microbiol 61:3069–3075

    CAS  Google Scholar 

  • Lay C (2004) Caractérisation moléculaire à haut débit de la diversité phylogénétique de la microflore digestive humaine. Ph.D. Thesis. Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, France

    Google Scholar 

  • Lay C, Dore J, Rigottier-Gois L (2007) Separation of bacteria of the Clostridium leptum subgroup from the human colonic microbiota by fluorescence-activated cell sorting or group-specific PCR using 16S rrna gene oligonucleotides. FEMS Microbiol Ecol 60:513–520

    CAS  Google Scholar 

  • Lay C, Rigottier-Gois L, Holmstrom K, Rajilic M, Vaughan EE, De Vos WM, Collins MD, Thiel R, Namsolleck P, Blaut M, Dore J (2005a) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71:4153–4155

    CAS  Google Scholar 

  • Lay C, Sutren M, Rochet V, Saunier K, Dore J, Rigottier-Gois L (2005b) Design and validation of 16S rrna probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7:933–946

    CAS  Google Scholar 

  • Lepage P, Colombet J, Marteau P, Sime-Ngando T, Dore J, Leclerc M (2008) Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57:424–425

    CAS  Google Scholar 

  • Lepage P, Seksik P, Sutren M, De La Cochetiere MF, Jian R, Marteau P, Dore J (2005) Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11:473–480

    Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    CAS  Google Scholar 

  • Mah KW, Chin VI, Wong WS, Lay C, Tannock GW, Shek LP, Aw MM, Chua KY, Wong HB, Panchalingham A, Lee BW (2007) Effect of a milk formula containing probiotics on the fecal microbiota of asian infants at risk of atopic diseases. Pediatr Res 62:674–679

    Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211

    CAS  Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, Quake SR (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci USA 104:11889–11894

    CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, Mcdade KE, Mckenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  Google Scholar 

  • Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682

    CAS  Google Scholar 

  • Martin R, Heilig GH, Zoetendal EG, Smidt H, Rodriguez JM (2007) Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 103:2638–2644

    CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rrna-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173

    CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rrna-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451

    CAS  Google Scholar 

  • Mccartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62:4608–4613

    CAS  Google Scholar 

  • Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Environ Microbiol 27:961–979

    CAS  Google Scholar 

  • Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    CAS  Google Scholar 

  • Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Dore J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033

    CAS  Google Scholar 

  • Mullard A (2008) Microbiology: the inside story. Nature 453:578–580

    Google Scholar 

  • Nakanishi Y, Murashima K, Ohara H, Suzuki T, Hayashi H, Sakamoto M, Fukasawa T, Kubota H, Hosono A, Kono T, Kaminogawa S, Benno Y (2006) Increase in terminal restriction fragments of Bacteroidetes-derived 16S rrna genes after administration of short-chain fructooligosaccharides. Appl Environ Microbiol 72:6271–6276

    CAS  Google Scholar 

  • Nielsen DS, Moller PL, Rosenfeldt V, Paerregaard A, Michaelsen KF, Jakobsen M (2003) Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol 69:7545–7548

    CAS  Google Scholar 

  • Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 42:2566–2572

    CAS  Google Scholar 

  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    CAS  Google Scholar 

  • Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the Human Infant Intestinal Microbiota. PLoS Biol 5(7):e177, 1556–1573

    Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, Van Den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    Google Scholar 

  • Perez PF, Dore J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119:e724–e732

    Google Scholar 

  • Podar M, Abulencia CB, Walcher M, Hutchison D, Zengler K, Garcia JA, Holland T, Cotton D, Hauser L, Keller M (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73:3205–3214

    CAS  Google Scholar 

  • Poretsky RS, Bano N, Buchan A, Lecleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126

    CAS  Google Scholar 

  • Requena T, Burton J, Matsuki T, Munro K, Simon MA, Tanaka R, Watanabe K, Tannock GW (2002) Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol 68:2420–2427

    CAS  Google Scholar 

  • Rigottier-Gois L, Le Bourhis A-G, Gramet G, Rochet V, Dore J (2003a) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rrna probes. FEMS Microbiol Ecol 43:237–245

    CAS  Google Scholar 

  • Rigottier-Gois L, Rochet V, Garrec N, Suau A, Dore J (2003b) Enumeration of Bacteroides species in human faeces by fluorescent in situ hybridisation combined with flow cytometry using 16S rrna probes. Syst Appl Microbiol 26:110–118

    Google Scholar 

  • Rinne M, Kalliomaki M, Salminen S, Isolauri E (2006) Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J Pediatr Gastroenterol Nutr 43:200–205

    Google Scholar 

  • Rochet V, Rigottier-Gois L, Sutren M, Krementscki MN, Andrieux C, Furet JP, Tailliez P, Levenez F, Mogenet A, Bresson JL, Meance S, Cayuela C, Leplingard A, Dore J (2006) Effects of orally administered Lactobacillus casei DN-114 001 on the composition or activities of the dominant faecal microbiota in healthy humans. Br J Nutr 95:421–429

    CAS  Google Scholar 

  • Sakamoto M, Hayashi H, Benno Y (2003) Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol 47:133–142

    CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD, Saarela M, De Vos WM (2001a) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513

    CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD, Saarela M, De Vos WM (2001b) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231

    CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Favier CF, Doré J, Edwards C, De Vos WM (2002) Diversity of bifidobacterium and lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rdna sequence differences. Microb Ecol Health Dis 14:97–105

    CAS  Google Scholar 

  • Saunier K, Rouge C, Lay C, Rigottier-Gois L, Dore J (2005) Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep 1156 16S rrna probe in combination with helper and competitor oligonucleotides. Syst Appl Microbiol 28:454–464

    CAS  Google Scholar 

  • Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, Jian R, Dore J (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 52:237–242

    CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rrna sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    CAS  Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104:9052–9057

    CAS  Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rrna from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  Google Scholar 

  • Suau A, Rochet V, Sghir A, Gramet G, Brewaeys S, Sutren M, Rigottier-Gois L, Dore J (2001) Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 24:139–145

    CAS  Google Scholar 

  • Tannock GW, Munro K, Bibiloni R, Simon MA, Hargreaves P, Gopal P, Harmsen H, Welling G (2004) Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol 70:2129–2136

    CAS  Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    CAS  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Google Scholar 

  • Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3(6):e2527

    Google Scholar 

  • Vanhoutte T, Huys G, De Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rrna gene primers. FEMS Microbiol Ecol 48:437–446

    CAS  Google Scholar 

  • Von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rrna analysis. FEMS Microbiol Rev 21:213–229

    CAS  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    CAS  Google Scholar 

  • Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and beta-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol 71:2347–2354

    CAS  Google Scholar 

  • Wang RF, Beggs ML, Erickson BD, Cerniglia CE (2004) DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol Cell Probes 18:223–234

    CAS  Google Scholar 

  • Wang M, Karlsson C, Olsson C, Adlerberth I, Wold AE, Strachan DP, Martricardi PM, Aberg N, Perkin MR, Tripodi S, Coates AR, Hesselmar B, Saalman R, Molin G, Ahrne S (2008) Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 121:129–134

    Google Scholar 

  • Wang RF, Kim SJ, Robertson LH, Cerniglia CE (2002) Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol Cell Probes 16:341–350

    CAS  Google Scholar 

  • Welling GW, Elfferich P, Raangs GC, Wildeboer-Veloo AC, Jansen GJ, Degener JE (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scand J Gastroenterol Suppl 222:17–19

    CAS  Google Scholar 

  • Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278

    CAS  Google Scholar 

  • Zoetendal EG, Akkermans AD, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rrna from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  Google Scholar 

  • Zoetendal EG, Akkermans ADL, Akkermans-Van Vliet WM, De Visser JAGM, De Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134

    Google Scholar 

  • Zoetendal EG, Ben-Amor K, Harmsen HJ, Schut F, Akkermans AD, De Vos WM (2002a) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rrna-targeted probes. Appl Environ Microbiol 68:4225–4232

    CAS  Google Scholar 

  • Zoetendal EG, Vaughan EE, De Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650

    CAS  Google Scholar 

  • Zoetendal EG, Von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, De Vos WM (2002b) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lay, C. (2009). Molecular Tools for Investigating the Gut Microbiota. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_2

Download citation

Publish with us

Policies and ethics