Skip to main content

Oligosaccharides Derived from Sucrose

  • Reference work entry
Prebiotics and Probiotics Science and Technology

Abstract

Sucrose is a non-reducing disaccharide, consisting of an α-D-glucopyranosyl residue and a β-D-fructofuranosyl residue linked covalently by their respective anomeric carbons (α-D-glucopyranosyl-1,2-β-D-fructofuranoside). It is not just a simple disaccharide, among others: in fact, the energy of its glycosidic bond is higher than that of a usual glycosidic bond. It is equal to 27.6 kJ/mol, which is similar to the energy of a nucleotide-sugar bond as in UDP-glucose or ADP-glucose. This means that sucrose is a protected and activated form of D-glucose (as well as of D-fructose), which plays a key role in the metabolism of plants, for a wide variety of synthesis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Brix :

degrees brix, sucrose concentration in % (w/w)

BVH :

bed volume per hour

Da :

daltons

DP :

degree of polymerization

F :

fructose

FOS :

fructooligosaccharides

FOSHU :

food of specified health use in Japan

G :

glucose

GF :

sucrose

GF2 :

1-kestose

GF3 :

nystose

GF4 :

fructosyl-nystose

G(n) :

dextrans

Kda :

kilo daltons in g/mole

NDOs :

non-digestible oligosaccharides

SCFAs :

short chain fatty acids

Sc-FOS :

short chain fructooligosaccharides

w/w :

weight per weight

w/v :

weight per volume

References

  • Ahmed FAF, Doaa ARM, Mona ATE (2005) Current Microbiol 51:402–407

    Article  Google Scholar 

  • Albenne C, Skov LK, Mirza O, Gajhede M, Feller G, D’Amico S, André G, Potocki-Véronèse G, van der B, Veen Monsan P, Remaud-Siméon M (2003) J Biol Chem 279:726–734

    Article  Google Scholar 

  • Alvarado M, Maugeri F (2007) J Biotechnol 131:S91–S92

    Article  Google Scholar 

  • Álvaro-Benito M, De Abreu M, Fernández-Arrojo L, Plou FJ, Jiménez-Barbero J, Ballesteros A, Polaina J, Fernández-Lobato M (2007) J Biotechnol 132:75–81

    Article  Google Scholar 

  • Argüello-Morales MA, Remaud-Siméon M, Pizzut S, Sarçabal P, Willemot RM, Monsan P (2000) FEMS Microbiol Lett 182:81–85

    Article  Google Scholar 

  • Argüello-Morales MA, Remaud-Siméon M, Willemot RM, Vignon MR, Monsan P (2001) Carbohydr Res 331:403–411

    Article  Google Scholar 

  • Arrojo LF, Alvaro M, Ghazi I, De Abreu M, Linde D, Gutierrez-Alonso P, Alcalde M, Jimenez-Barbero J, Jimenez A, Ballesteros A, Fernandez-Lobato M, Plou FJ (2007) J Biotechnol 131S:S107

    Google Scholar 

  • Avigad G (1957) J Biol Chem 229:121–129

    CAS  Google Scholar 

  • Bekers M, Marauska M, Grube M, Karklina D, Duma M (2004) Acta Alimentaria 33:31–37

    Article  CAS  Google Scholar 

  • Boucher J, Daviaud D, Remaud-Siméon M, Carpéné C, Saulnier-Blache JS, Monsan P, Valet P (2003) J Physiol Biochem 59:169–174

    Article  CAS  Google Scholar 

  • Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Siméon M, Monsan P, Willemot RM (2002) J Bacteriol 184:5753–5761

    Article  CAS  Google Scholar 

  • Brighenti F (2007) J Nutr 137:2552S–2556S

    CAS  Google Scholar 

  • Byun SH, Han WC, Soon AK, Chul HK, Jang KH (2007) J Biotechnol 131:S112

    Article  Google Scholar 

  • Carlsson TL, Woo A, Zheng GH (2006) WO 088884

    Google Scholar 

  • Chambert R, Treboul G, Dedonder R (1974) Eur J Biochem 41:285–300WO 088884

    Article  CAS  Google Scholar 

  • Cheng CY, Duan KJ, Sheu DC, Lin CT, Li SY (1996) J Chem Tech Biotechnol 66:135–138

    Article  CAS  Google Scholar 

  • Choi HJ, Kim CS, Kim P, Jung HC, Oh DK (2004) Biotechnol Prog 20:1876–1879

    Article  CAS  Google Scholar 

  • Côté GL, Dunlap CA (2003) Carbohydr Res 338:1961–1967

    Article  Google Scholar 

  • Côté GL, Robyt JF (1982a) Carbohydr Res 101:57–74

    Article  Google Scholar 

  • Côté GL, Robyt JF (1982b) Carbohydr Res 111:127–142

    Article  Google Scholar 

  • Dedonder R (1966) Meth Enzymol 8:500–505

    Article  CAS  Google Scholar 

  • Djouzi Z, Andrieux C (1997) Br J Nutr 78:313–324

    Article  CAS  Google Scholar 

  • Djouzi Z, Andrieux C, Pelenc V, Somarriba S, Popot F, Paul F, Monsan P, Szylit O (1995) J Appl Bacteriol 79:117–127

    CAS  Google Scholar 

  • Dols M, Remaud-Siméon M, Monsan P (1997a) Enzyme Microb Technol 20:523–530

    Article  CAS  Google Scholar 

  • Dols M, Remaud-Siméon M, Monsan P (1997b) Appl Biochem Biotechnol 62:47–59

    Article  CAS  Google Scholar 

  • Euzenat O, Guibert A, Combes D (1997) Process Biochem 32:237–243

    Article  CAS  Google Scholar 

  • Fabre E, Bozonnet S, Arcache A, Willemot RM, Vignon V, Monsan P, Remaud-Siméon M (2005) J Bacteriol 187:296–230

    Article  CAS  Google Scholar 

  • Fujita K, Hara K, Hashimoto H, Kitahata S (1990) Agric Biol Chem 54:2655–2661

    CAS  Google Scholar 

  • Ghazi I, De Segura AG, Femandez-Arrojo L, Alcade M, Yates M, Rojas-Cervantes ML, Plou FJ, Ballesteros A (2005) J Mol Catal B Enzym 35:19–27

    Article  CAS  Google Scholar 

  • Giacco R, Clemente G, Luongo D, Lasorella G, Fiume I, Brouns F, Bornet F, Patti L, Cipriano P, Rivellese AA, Riccardi G (2004) Clin Nutr 23:331–340

    Article  CAS  Google Scholar 

  • Gibson GR (2004) Best Pract Res Clin Gastroenterol 18:287–298

    Article  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) J Nutr 125:1401–1412

    CAS  Google Scholar 

  • Grizard D, Bartomeuf C (1999) Reprod Nutr Dev 39:563–588

    Article  CAS  Google Scholar 

  • Han JS, Park KJ, Shin DS, Kim JH, Kim JC, Lee KC, Kim SW, Park SW (2003) US Patent Application, 2003/0054499 A1

    Google Scholar 

  • Hang YD, Woodmans EE (1996) Lebnsm Wiss Technol 29:578–580

    Article  CAS  Google Scholar 

  • Hidaka H, Eida T, Saitoh Y (1987) Nippon Nogeikagaku Kaishi 61:915–923

    CAS  Google Scholar 

  • Hidaka H, Hirayama M, Sumi N (1988) Agric Biol Chem 52:1181–1187

    CAS  Google Scholar 

  • Hirayama M (2002) Pure Appl Chem 74:1271–1279

    Article  CAS  Google Scholar 

  • Hirayama M, Sumi N, Hidaka H (1988) Agric Biol Chem 53:667–673

    Google Scholar 

  • Holt SM, Miller-Fosmore CM, Côté GL (2005) Lett Appl Microbiol 40:385–390

    Article  CAS  Google Scholar 

  • Jeanes AR, Haynaes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) J Am Chem Soc 76:5041–5052

    Article  CAS  Google Scholar 

  • Joucla G, Pizzut S, Monsan P, Remaud-Siméon M (2006) FEBS Lett 580:763–768

    Article  CAS  Google Scholar 

  • Jung KH, Kim JH, Jeon YJ, Lee JH (1993) Biotechnol Lett 15:65–70

    Article  CAS  Google Scholar 

  • Jung KH, Jong WY, Kyung RK, Jai YL, Jae HL (1989) Enz Microbiol Technol 11:491–494

    Article  CAS  Google Scholar 

  • Jung KH, Lim JY, Yoo SJ, Lee JH, Yoo MY (1987) Biotechnol Lett 9:703–708

    Article  CAS  Google Scholar 

  • Katopodis P, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Food Biotechnol 17:1–14

    Article  Google Scholar 

  • Kawase M, Pilgrim A, Araki T, Hashimoto K (2001) Chem Eng Sci 56:453–458

    Article  CAS  Google Scholar 

  • Kilian S, Kritzinger S, Rycroft C, Gibson GR (2002) World J Microbiol Biotechnol 18:637–644

    Article  CAS  Google Scholar 

  • Koepsell HJ, Tsuchiya HM, Hellman NN, Kasenko A, Hoffman CA, Sharpe ES, Jackson RW (1952) J Biol Chem 200:793–801

    Google Scholar 

  • Kono T, Yamaguchi G, Hidaka H (1994) US Patent 5314810

    Google Scholar 

  • Kosmann J, Welsh T, Quanz M, Knuth K (1999) European Patent 1 151 085:B1

    Google Scholar 

  • Lamothe JP, Marchenay Y, Monsan P, Paul F, Pelenc V (1992) French Patent 2678166

    Google Scholar 

  • Lee JH, Shinohara S (2001) J Microbiol 12:331–333

    Google Scholar 

  • Lizuka M, Minamiura Y, Kojima I (1995) Japan Patent 71155986

    Google Scholar 

  • Lopez-Munguia A, Pelenc V, Remaud M, Biton J, Michel J, Lang C, Monsan P (1993) Enzyme Microb Technol 15:77–85

    Article  CAS  Google Scholar 

  • Luo J, Van Yperselle M, Salwa WR, Rossi F, Bornet FRJ, Slama G (2000) J Nutr 130:1572–1577

    CAS  Google Scholar 

  • Marx SP, Winkler S, Hartmeier W (2000) FEMS Microbiol Lett 44:647–649

    Google Scholar 

  • Maugeri F, Hernalsteens S (2007) J Mol Catal B Enzym 49:43–49

    Article  CAS  Google Scholar 

  • Monsan P, Auriol D (2004) In: Neeser JR, German JB (eds) Bioprocesses and biotechnology for functional foods and nutraceuticals. Marcel Dekker Inc., New York, pp. 135–149

    Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Siméon M (2001)

    Google Scholar 

  • Monsan P, Paul F (1995) In: Wallace RJ, Chesson A (eds) Biotechnology in animal feed and animal feeding. VCH, Weinheim, pp. 233–245

    Chapter  Google Scholar 

  • Monsan P, Potocki de Montalk G, Sarçabal P, Remaud-Siméon M, Willemot RM (2000) In: Bielecki S, Tramper J, Polak J (eds) Food biotechnology. Elsevier, Amsterdam, pp. 115–122

    Google Scholar 

  • Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Véronèse G, Monsan P, Remaud-Siméon M (2006) J Biol Chem 281:31254–31267

    Article  CAS  Google Scholar 

  • Moulis C, Vaca-Medina G, Suwannarangsee S, Monsan P, Potocki-Véronèse G, Remaud-Siméon M (2008) Biocatal Biotransformation 24:141–151

    Article  Google Scholar 

  • Mountzouris KC, Gilmour SG, Grandison AS, Rastall RA (1999) Enzyme Microb Technol 24:75–85

    Article  CAS  Google Scholar 

  • Mussato SI, Mancilha IM (2007) Carbohydr Polym 68:587–597

    Article  Google Scholar 

  • Nakakuki T (2002) Pure Appl Chem 74:1245–1251

    Article  CAS  Google Scholar 

  • Nizikawa K, Nakajima M, Natabeni H (2001) Food Sci Technol Res 7:39–44

    Article  Google Scholar 

  • Nobre C, Dominguez A, Torres D, Rocha O, Rodriguez L, Rocha I, Teixeira J, Ferreira E (2006) World Congress of Food Science and Tecnology: Food is life, France, September 21

    Google Scholar 

  • Olano-Martin E, Mountzouris KC, Gibson GR, Rastall RA (2000) Br J Nutr 83:247–255

    CAS  Google Scholar 

  • Ouarne F, Guibert A (1995) Zuckerind 120:793–798

    CAS  Google Scholar 

  • Park JP, Oh TK, Yun JW (2001) Process Biochem 37:471–476

    Article  Google Scholar 

  • Park NH, Choi HJ, Oh DK (2005) Biotechnol Lett 27:495–497

    Article  CAS  Google Scholar 

  • Park YK, Pastore GM (1998) PCT patent BR98/00022

    Google Scholar 

  • Pelenc V, Lopez-Munguia A, Remaud M, Biton J, Michel J, Paul F, Monsan P (1991) Sci Alim 11:465–476

    CAS  Google Scholar 

  • Pilgrim A, Kawase M, Ohashi M, Fujita K, Murakami K, Hashimoto K (2001) Biosci Biotechnol Biochem 65:758–765

    Article  CAS  Google Scholar 

  • Potocki de Montalk G, Remaud-Siméon M, Willemot RM, Planchot V, Monsan P (1999) J Bacteriol 181:375–381

    Google Scholar 

  • Potocki-Véronèse G, Puteaux JL, Dupeyre D, Albenne C, Remaud-Siméon M, Monsan P, Buléon A (2005) Biomacromolecules 6:1000–1011

    Article  Google Scholar 

  • Ramesh MN, Shivakumara M, Sangeetha PT, Gurudutt P, Prakash M (2005) US patent application 0069627 A1

    Google Scholar 

  • Remaud-Siméon M, López-Munguía A, Pelenc V, Paul F, Monsan P (1994) Appl Biochem Biotechnol 44:101–117

    Article  Google Scholar 

  • Ritsema T, Smeekens (2003) Curr Opin Plant Biol 6:223–230

    Article  CAS  Google Scholar 

  • Roberfroid M (2008a) In: Gibson GR, Roberfroid MB (eds) Handbook of prebiotics.CRC Press, Boca Raton, pp. 39–68

    Chapter  Google Scholar 

  • Roberfroid MB (2007) J Nutr 137:830S–837S

    CAS  Google Scholar 

  • Roberfroid MB (2008b) Handbook of prebiotics. Taylor & Francis group, Boca Raton, pp. 39–68

    Book  Google Scholar 

  • Rolland-Sabaté A, Planchot V, Potocki-Véronèse V, Monsan P, Colonna P (2004) J Cereal Sci 40:17–30

    Article  Google Scholar 

  • Rousseau V, Lepargneur JP, Roques C, Remaud-Siméon M, Paul F (2005) Anaerobe 11:145–153

    Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004) Process Biochem 39:753–758

    Article  CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005a) Process Biochem 40:1085–1088

    Article  CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005b) Trend Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  • Santos AMP, Maugeri F (2007) Food Technol Biotechnol 45:181–186

    CAS  Google Scholar 

  • Sanz ML, Côté GL, Gibson GR, Rastall RA (2006a) FEMS Microbiol Ecol 56:383–388

    Article  CAS  Google Scholar 

  • Sanz ML, Côté GL, Gibson GR, Rastall RA (2006b) J Agric Food Chem 54:9779–9784

    Article  CAS  Google Scholar 

  • Sanz ML, Gibson GR, Rastall RA (2005) J Agric Food Chem 53:5192–5199

    Article  CAS  Google Scholar 

  • Seymour FR, Knapp RD, Chen ECM, Bishop H, Jeanes A (1979) Carbohydr Res 74:41–62

    Article  CAS  Google Scholar 

  • Shin HT, Baig SY, Lee SW, Suh DS, Kwon ST, Lim YB, Lee JH (2004) Biores Technol 93:59–62

    Article  CAS  Google Scholar 

  • Shiomi N, Yamada J, Izawa M (1979) Agric Biol Chem 43:2233–2244

    CAS  Google Scholar 

  • Skov LK, Mirza O, Henriksen A, Potocki de Montalk G, Remaud-Siméon M, Willemot RM, Monsan P, Gajhede M (2001) J Biol Chem 276:25273–25278

    Article  CAS  Google Scholar 

  • Su YC, Sheu CS, Chien JY, Tzan TK (1991) Proc Natl Sci Counc Repub China B 15:131–139

    CAS  Google Scholar 

  • Südzucker AG (2005/2006) Annual Report

    Google Scholar 

  • Swennen K, Courtin CM, Delcour JA (2006) Crit Rev Food Sci Nutr 46:459–471

    Article  CAS  Google Scholar 

  • Tanaka T, Oi S, Yamamoto T (1979) J Biochem 85:287–293

    CAS  Google Scholar 

  • Tanriseven A, Asla Y (2005) Enzyme Microbial Technol 36:550–554

    Article  CAS  Google Scholar 

  • Valette P, Pelenc V, Djouzi Z, Andrieux C, Paul F, Monsan P, Szylit O (1993) J Sci Food Agric 62:121–127

    Article  CAS  Google Scholar 

  • Vankova K, Onderkova Z, Antosova M, Polkovic M (2008) Chem Papers 4:375–381

    Article  Google Scholar 

  • Yun JW (1996) Enzyme Microbial Technol 19:107–117

    Article  CAS  Google Scholar 

  • Yun JW, Jung KH, Jeon YJ, Lee JH (1992) J Microbiol Biotechnol 2:98–101

    CAS  Google Scholar 

  • Yun JW, Jung KH, Oh JW, Lee JH (1990) Appl Biochem Biotechnol 24/25:299–308

    Article  Google Scholar 

  • Yun JW, Song KS (1999) Methods in biotechnology, In: Bucke C (ed) Carbohydrate biotechnology protocols. vol. 10: Human Press Inc., Totowa, pp. 141–151

    Chapter  Google Scholar 

  • Zuccaro A, Goetze S, Kneip S, Dersch P, Seibel J (2008) Chem Bio Chem 9:143–149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Monsan, P.F., Ouarné, F. (2009). Oligosaccharides Derived from Sucrose. In: Charalampopoulos, D., Rastall, R.A. (eds) Prebiotics and Probiotics Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79058-9_10

Download citation

Publish with us

Policies and ethics