Skip to main content

Cryosphere, Measurements and Applications

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

(Land)fast ice. Sea ice attached to the shore or near-shore sea bed.

Nunatak. A mountain peak protruding through glacier ice.

Introduction

Remote sensing of the cryosphere has a 50 year history. We begin with an historical overview of aerial photography of the cryosphere – mainly glaciers and ice caps – and then proceed to satellite imagery and data for each of the major components of the cryosphere. In turn, we consider glaciers, snow cover, freshwater ice, sea ice, ice sheets and ice shelves, icebergs, and frozen ground.

Aerial photography

Glaciers and ice caps

Remote sensing of the cryosphere began with both vertical and oblique aerial photography of glaciers and ice caps. A massive campaign to photograph the Canadian Arctic was undertaken in the late 1940s–1950s (Dunbar and Greenway, 1956) and the photography covered all land areas. The US Geological Survey (USGS) photographed numerous glaciers in western North America and Alaska beginning in the 1950s (Post, 2005: http://earthweb.ess.washington.edu/EPIC/Collections/Post/index.htm...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abdalati, W., and Steffen, K., 1996. Passive microwave-derived snow melt regions on the Greenland IceSheet. Geophysical Research Letters, 22, 787–790.

    Google Scholar 

  • Agnew, T. A., Le, H., and Hirose, T., 1997. Estimation of large-scale sea-ice motion from SSM/I 85.5 GHz imagery. Annals of Glaciology, 25, 305–311.

    Google Scholar 

  • Aizen, V. B., Aizen, E. M., and Kuzmichenok, V. A., 2007. Glaciers and hydrological changes in the Tien Shan: simulation and prediction. Environmental Research Letters, 2, 045019, 10 pp.

    Google Scholar 

  • Allen, J. R., and Long, D. G., 2006. Microwave observations of daily Antarctic sea-ice edge expansion and contraction rates. IEEE Geoscience and Remote Sensing Letters, 3(1), 54–58.

    Google Scholar 

  • Altmaler, A., and Kany, C., 2002. Digital surface model generation from CORONA satellite images. Journal of Photogrammetry and Remote Sensing, 56, 221–235.

    Google Scholar 

  • Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L. T., 2007. Intercomparson of passivemicrowave sea ice concentration retrievals over high-concentration Arctic sea ice. Journal of Geophysical Research, 112, C08004, doi:10.1029/2006JC003543.

    Article  Google Scholar 

  • Anderson, H. S., and Long, D. G., 2005. Sea ice mapping method for SeaWinds. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 647–657.

    Google Scholar 

  • Arctic and Antarctic Research Institute, 2007. Sea ice charts of the Russian arctic in gridded format, 1933–2006. In Smolyanitsky, V., Borodachev, V., Mahoney, A., Fetterer, F., and Barry, R. (eds.), Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Armstrong, R. L., et al., 2005a. Global Monthly EASE-Grid Snow Water Equivalent Climatology. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Armstrong, R., et al., 2005b. GLIMS Glacier Database. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Asmus, V., 2003. Russian environmental satellites: current status and development perspectives. In Committee on Earth Observation Satellites, 17th Plenary Meeting Colorado Springs, November 19–20, 2003, Colorado Springs, CO, Item 19.5.

    Google Scholar 

  • Ballantyne, J., and Long, D. G., 2002. A multidecadal study of the number of Antarctic icebergs using scatterometry data. In Geoscience and Remote Sensing Symposium, 2002. IGARSS’02, Vol. 5, pp. 3029–3031.

    Google Scholar 

  • Barry, R. G., and Gan, T. Y., 2011. The global cryosphere: past, present and future. Cambridge: Cambridge University Press, 498 pp.

    Google Scholar 

  • Bayr, K. J., Hall, D. K., and Kovalick, W. M., 1994. Observations on glaciers in the eastern Austrian Alps using satellite data. International Journal of Remote Sensing, 15, 1733–1742.

    Google Scholar 

  • Belchansky, G. I., Douglas, D. C., and Platonov, N. G., 2004. Duration of the Arctic melt season: regional and interannual variability, 1979–2001. Journal of Climate, 17, 67–80.

    Google Scholar 

  • Bertoia, C., Manore, M., and Andersen, H. S., 2001. Mapping ice covered waters from space. Backscatter, 12, 14–21.

    Google Scholar 

  • Bindschadler, R., and Seider, W., 1998. Declassified intelligence satellite photography (DISP) coverage of Antarctica. NASA Technical Memorandum 1998–206879, 38 pp.

    Google Scholar 

  • Bindschadler, R., and Vornberger, P., 1998. Changes in the West Antarctic Ice Sheet since 1963 from declassified satellite photography. Science, 279, 689–692.

    Google Scholar 

  • Bishop, M. P., et al., 2004. Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2), 57–84.

    Google Scholar 

  • Bjerkelund, C. A., Ramseier, R. O., and Rubinstein, I. G., 1990. Validation of the SSM/I and AES/York algorithms for sea ice parameters. In Ackley, S. F., and Weeks, W. F. (eds.), Sea Ice Properties and Processes. Hannover, NH: USACE. U.S. Army Cold Regions Research and Engineering Laboratory Monograph, Vol. 90–91, pp. 206–208.

    Google Scholar 

  • Borodachev, B. E., and Shilnikov, V. I., 2003. Istoriya L’dovoi Aviatsionnoi Razedki v Arktikei na Zamerzayushchikh Moryakh Rossii (1924–1993) [The History of Aerial Ice Reconnaissance in the Arctic and Ice-covered Seas of Russia, 1924–1993]. St. Petersburg: Gidrometeoizdat, 441 pp.

    Google Scholar 

  • Carsey, F. (ed.), 1992a. Microwave Remote Sensing of Sea Ice. Washington, DC: American Geophysical Union. Geophysical Monograph, Vol. 68, 478 pp.

    Google Scholar 

  • Carsey, F., 1992b. Remote sensing of ice and snow: review and status. International Journal of Remote Sensing, 13, 5–11.

    Google Scholar 

  • Cavalieri, D. J., Gloersen, P., and Campbell, W. J., 1984. Determination of sea ice parameters with Nimbus 7 SMMR. Journal of Geophysical Research, 89(C3), 5355–5369.

    Google Scholar 

  • Chang, A. T. C., Foster, J. L., and Hall, D. K., 1987. Nimbus-7 SMMR derived global snow cover parameters. Annals of Glaciology, 9, 39–44.

    Google Scholar 

  • Chang, A. T. C., Foster, J. L., and Hall, D. K., 1990. Satellite sensor estimates of northern hemisphere snow volume. International Journal of Remote Sensing, 11, 167–171.

    Google Scholar 

  • Chang, A. T. C., et al., 2003. Global SWE monitoring using AMSR-E data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2003, pp 680–682.

    Google Scholar 

  • Cline, D., et al., 1999. Cold Land Processes Mission (EX-7) Science and Technology Implementation Plan. Report on the NASA Post-2002 Land Surface Hydrology Planning Workshop, Irvine, CA.

    Google Scholar 

  • Comiso, J. C., 1986. Characteristics of Arctic winter sea ice from satellite multispectral microwave observation. Journal of Geophysical Research, 91(C1), 975–994.

    Google Scholar 

  • Comiso, J. C., and Nishio, F., 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research, 113(C2), C02S07.

    Google Scholar 

  • Comiso, J. C., Cavalieri, D., Parkinson, C., and Gloersen, P., 1997. Passive microwave algorithms for sea ice concentrations: a comparison of two techniques. Remote Sensing of Environment, 60(3), 357–384.

    Google Scholar 

  • Comiso, J. C., Cavalieri, D. J., and Markus, T., 2003. Sea ice concentration, ice temperature, and snow depth using AMSR-E data. IEEE Transactions on Geoscience and Remote Sensing, 42, 243–252.

    Google Scholar 

  • Copeland, L., Mueller, D. R., and Weir, L., 2007. Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters, 34, L21501.

    Google Scholar 

  • Csatho, B., et al., 2000. Investigating the longterm behavior of Greenland outlet glaciers using high-resolution satellite imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARRS), 2002, pp. 1047–1150.

    Google Scholar 

  • Dedieu, J. F., and et al., 2003. Glacier mass balance determination by remote sensing in the French Alps: Progress and limitation for time series monitoring. In Proceedings of the Fourth International Geoscience and Remote Sensing Symposium (IGARSS)’03, pp. 2602–2604.

    Google Scholar 

  • Dozier, J., and Marks, D., 1987. Snow mapping and classification from Landsat Thematic Mapper data. Annals of Glaciology, 9, 97–103.

    Google Scholar 

  • Dozier, J., and Painter, T. H., 2004. Multispectral and hyperspectral remote sensing of alpine snow properties. Annual Reviews of Earth and Planetary Sciences, 32, 465–494.

    Google Scholar 

  • Drobot, S. D., and Anderson, M. R., 2001. An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and special sensor microwave/imager data. Journal of Geophysical Research, 106(D20), 24,033–24,050.

    Google Scholar 

  • Duguay, C. R., and Lafleur, P. M., 2003. Estimating depth and ice thickness of shallow subarctic lakes using spaceborne optical and SAR data. International Journal of Remote Sensing, 24(3), 475–489.

    Google Scholar 

  • Dunbar, M. R., and Greenway, K. R., 1956. Arctic Canada from the Air. Ottawa: Defense Research Board, 541 pp.

    Google Scholar 

  • Fahnestock, M., et al., 1993. Greenland Ice Sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262(5139), 1530–1534.

    Google Scholar 

  • Fahnestock, M., Scambos, T., Haran, T., and Bauer, R., 2006. AWS data: characteristics of snow megadunes and their potential effect on ice core interpretation. Digital media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Foster, J. L., et al., 1980. Snowpack monitoring in North America and Eurasia using passive microwave satellite data. Remote Sensing of Environment, 10, 285–298.

    Google Scholar 

  • Foster, J., Chang, A., and Hall, D., 1997. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sensing of Environment, 62, 132–142.

    Google Scholar 

  • Fricker, H. A., et al., 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 1544–1548.

    Google Scholar 

  • Giles, K. A., Laxon, S. W., and Worby, A. P., 2008. Antarctic sea ice elevation from satellite radar altimetry. Geophysical Research Letters, 35, L03503, doi:10.1029/2007GL031572.

    Article  Google Scholar 

  • Glasser, N. F., and Scambos, T. A., 2008. A structural glaciological analysis of the 2002 Larsen B ice shelf collapse. Journal of Glaciology, 54(184), 3–16.

    Google Scholar 

  • Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L., and Zwally, H. J., 1992. Arctic and Antarctic Sea Ice, 1978–1987: Satellite Passive-Microwave Observations and Analysis. Washington, DC: NASA.

    Google Scholar 

  • Goodison, B. E., and Walker, A. E., 1994. Canadian development and use of snow cover information from passive microwave satellite data. In Choudhury, B. (ed.), Passive Microwave Remote Sensing of Land-Atmosphere Interactions. Utrecht: VSP VB, pp. 245–262.

    Google Scholar 

  • Haarpaintner, J., 2006. Arctic-wide operational sea ice drift from enhanced resolution QuikScat/SeaWinds scatterometry and its validation. IEEE Transactions on Geoscience and Remote Sensing, 42, 1433–1443.

    Google Scholar 

  • Haas, C., and Eicken, H., 2001. Interannual variability of summer sea ice thickness in the Siberian and central Arctic under different atmospheric circulation regimes. Journal of Geophysical Research, 106(C3), 4449–4462.

    Google Scholar 

  • Hall, D. K., and Riggs, G. A., 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes, 21, 1534–1547.

    Google Scholar 

  • Hall, D. K., Williams, R. S., Jr., and Bayr, K. J., 1992. Glacier recession in Iceland and Austria. Eos, Transactions of the American Geophysical Union, 73, 129, 135 and 141.

    Google Scholar 

  • Hanna, E., and Bamber, J., 2001. Derivation and optimization of a new Antarctic sea-ice record. International Journal of Remote Sensing, 22, 113–139.

    Google Scholar 

  • Haran, T. (ed.), 2003. CLPX-Satellite: MODIS radiances, reflectances, snow cover and related grids. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Haran, T., et al., 2005 updated 2006. MODIS mosaic of Antarctica (MOA) image map. Digital media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Helfrich, S., et al., 2007. Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrological Processes, 21, 1576–1586.

    Google Scholar 

  • Howat, I. M., Joughin, I., and Scambos, T. A., 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 1559–1561.

    Google Scholar 

  • Johannessen, O. M., et al., 2007. Remote Sensing of Sea Ice in the Northern SeaRoute: Studies and Applications. Chichester: Springer, Praxis, p. 472.

    Google Scholar 

  • Joughin, I. R., Fahnestock, M. A., and Bamber, J. L., 2000. Ice flow in the northeast Greenland ice stream. Annals of Glaciology, 31, 141–146.

    Google Scholar 

  • Khromova, T. E., et al., 2006. Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sensing of Environment, 102, 24–32.

    Google Scholar 

  • Kim, K., Jezek, K., and Liu, H., 2006. Orthorectified image mosaic of Antarctica from 1963 Argon satellite photography: image processing and glaciological applications. International Journal of Remote Sensing, 28(23), 5357–5373.

    Google Scholar 

  • Kukthuroja, N., White, M. A., and Luecke, C., 2006. Using Daily MODIS 250 m Data to Monitor Lake Ice Out. Department of Watershed Sciences, Utah State University, 5 pp.

    Google Scholar 

  • Kwok, R., 2008. Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophysical Research Letters, 35, L03504, doi:10.1029/2007GL032692.

    Article  Google Scholar 

  • Kwok, R., and Cunningham, G. F., 2002. Seasonal sea ice area and volume production of the Arctic Ocean: November 1996 through April 1997. Journal of Geophysical Research, 107, 8038, doi:10.1029/2000JC000469.

    Article  Google Scholar 

  • Kwok, R., et al., 1995. Determination of the age distribution of sea ice from Lagrangian observations of ice motion. IEEE Transactions on Geoscience and Remote Sensing, 33, 392–400.

    Google Scholar 

  • Kwok, R., et al., 1998. Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. Journal of Geophysical Research, 103(C4), 8191–8214.

    Google Scholar 

  • Kwok, R., et al., 2008. Ice, Cloud, and Land Elevation Satellite (ICESat) over Arctic sea ice: retrieval of freeboard. Journal of Geophysical Research, 112(1–19), C12013.

    Google Scholar 

  • Laine, V., 2008. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data. Remote Sensing of Environment, 112(3), 646–667.

    Google Scholar 

  • Lauriol, B., et al., 1986. The residual snow cover in the Canadian Arctic in July: a means to evaluate the regional maximum snow depth in winter. Arctic, 39, 309–315.

    Google Scholar 

  • Laxon, S. W., Peacock, N., and Smith, D., 2003. High interannual variability of sea ice thickness in the Arctic region. Nature, 425, 947–950.

    Google Scholar 

  • Laxon, S. W., et al., 2012. CryoSat 2 estimates of Arctic ice thickness and volume. Geophysical Research Letters, 40, 732–737.

    Google Scholar 

  • Leconte, R., and Klassen, P. D., 1991. Lake and river ice investigations in northern Manitoba using airborne SAR imagery. Arctic, 44(Suppl. 1), 153–163.

    Google Scholar 

  • Leshkevich, G. A., Ngiem, S. V., and Kwok, R. 1998. Algorithm development for satellite synthetic aperture radar (SAR) classification and mapping of Great Lakes ice cover. In Proceedings, IEEE International Geoscience and Remote Sensing Symposium (IGARSS’98), Seattle, WA, 3 pp.

    Google Scholar 

  • Liang, S., Stroeve, J., and Box, J., 2005. MODIS-derived Greenland ice sheet albedo: the improved direct estimation algorithm. Journal of Geophysical Research, 110, doi:10.1029/2004JD005493.

    Google Scholar 

  • Liu, A. K., and Cavalieri, D. J., 1998. On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data. International Journal of Remote Sensing, 19, 1415–1423.

    Google Scholar 

  • Long, D. G., Hardin, P. J., and Whiting, P. T., 1993. Resolution enhancement of spaceborne scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 31, 700–715.

    Google Scholar 

  • Lucchitta, B. K., et al., 1993. Antarctic glacial tongue velocities from Landsat images: first results. Annals of Glaciology, 17, 356–366.

    Google Scholar 

  • Mahoney, A. R., et al., 2008. Observed sea ice extent in the Russian Arctic, 1933–2006. Journal of Geophysical Research, 113, C110015.

    Google Scholar 

  • Markus, T., and Cavalieri, D., 2000. An enhancement of the NASA team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38, 1387–1398.

    Google Scholar 

  • Martinec, J., and Rango, A., 1987. Interpretation and utilization of areal snow cover data from satellites. Annals of Glaciology, 9, 166–169.

    Google Scholar 

  • Maslanik, J., et al., 1998. AVHRR-based polar pathfinder products for modeling applications. Annals of Glaciology, 25, 388–392.

    Google Scholar 

  • Maslanik, J. A., et al., 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34, L24501, doi:10.1029/2007GL032043.

    Article  Google Scholar 

  • Maurer, J., 2003. Spaceborne scatterometry of the cryosphere: a review. http://cires.colorado.edu/~maurerj/scatterometry/scatterometry_cryosphere

  • McDonald, R. M., 1995. Opening the cold war sky to the public: declassifying satellite reconnaissance imagery. Photogrammetric Engineering and Remote Sensing, 61, 485–490.

    Google Scholar 

  • Meier, W. M., 2005. Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Transactions in Geoscience and Remote Sensing, 43(6), 1324–1337.

    Google Scholar 

  • Meier, W. N., and Dai, M., 2006. High-resolution sea-ice motions from AMSR-E imagery. Annals Glaciology, 44, 353–356.

    Google Scholar 

  • Meier, W. N., and Stroeve, J., 2008. Comparison of sea-ice extent and ice-edge location estimates from passive microwave and enhanced-resolution scatterometer data. Annals of Glaciology, 48, 65–70.

    Google Scholar 

  • Meier, W. N., Maslanik, J. A., and Fowler, C. W., 2000. Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. Journal of Geophysical Research, 105, 3339–3356.

    Google Scholar 

  • Mote, T. L., and Anderson, M. R., 1995. Variations in snowpack melt on the Greenland ice sheet based on passive-microwave measurements. Journal of Glaciology, 41(137), 51–60.

    Google Scholar 

  • Mueller, D. R., Vincent, W. F., and Jeffries, M. O., 2003. Ice shelf break-up and ecosystem loss in the Canadian High Arctic. Eos, Transactions American Geophysical Union, 84(49), 548–552.

    Google Scholar 

  • Nghiem, S. V., et al., 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34, L19504, doi:10.1029/2007GL031138.

    Article  Google Scholar 

  • Nolin, A. W., et al., 2001. Cryospheric applications of MISR data. In Proceedings of the Third IEEE International Geoscience and Remote Sensing Symposium (IGARRS) 2001. New York: IEEE, pp. 1219–1221.

    Google Scholar 

  • Nolin, A., Fetterer, F., and Scambos, T., 2002. Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data. IEEE Transactions of Geophysics and Remote Sensing, 40(7), 1605–1615.

    Google Scholar 

  • NORSEX Group, 1983. Norwegian remote sensing experiment in a marginal ice zone. Science, 220(4599), 781–787.

    Google Scholar 

  • Painter, T. H., Roberts, D. A., Green, R. O., and Dozier, J., 1998. The effect of grain size on spectral mixture analysis of snow-covered area with AVIRIS data. Remote Sensing of Environment, 65, 320–332.

    Google Scholar 

  • Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O., 2003. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment, 85, 64–77.

    Google Scholar 

  • Parkinson, C. L., et al., 1987. Antarctic sea ice, 1973–1976: satellite passive-microwave observations. Washington, DC: NASA, SP 489, 296 pp.

    Google Scholar 

  • Parkinson, C., Comiso, J., and Zwally, H. J., 1999. Nimbus-5 ESMR daily polar gridded brightness temperatures. Digital media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Partington, K. C., 2000. A data fusion algorithm for mapping sea-ice concentrations from Special Sensor Microwave/Imager data. IEEE Transactions on Geoscience and Remote Sensing, 38, 1947–1958.

    Google Scholar 

  • Paul, F., 2000. Evaluation of different methods for glacier mapping using Landsat TM. In Proceedings, EARSeL-SIG Workshop. Dresden: Land ice and Snow.

    Google Scholar 

  • Peacock, N. R., and Laxon, S. W., 2004. Sea surface height determination in the arctic ocean from ERS altimetry. Journal of Geophysical Research, 109, C07001, doi:10.1029/2001JC001026.

    Article  Google Scholar 

  • Power, D., et al., 2001. Iceberg detection capabilities of RADASAT synthetic aperture radar. Canadian Journal of Remote Sensing, 27(5), 476–486.

    Google Scholar 

  • Racoviteanu, A., et al., 2008. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. Journal of Glaciology, 56(186), 499–510.

    Google Scholar 

  • Ramsay, B. H., 1998. Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrological Processes, 12, 1537–1546.

    Google Scholar 

  • Raup, B., et al., 2007. The GLIMS geospatial glacier database: a new tool for studying glacier change. Global and Planetary Change, 56, 101–110.

    Google Scholar 

  • Remund, Q. P., and Long, D. G., 1999. Sea ice extent mapping using Ku band scatterometer data. Journal of Geophysical Research, 104(C5), 11,515–11,527.

    Google Scholar 

  • Rignot, E., and Thomas, R. H., 2002. Mass balance of polar ice sheets. Science, 297(5586), 1502–1506.

    Google Scholar 

  • Roth, A., et al., 1993. Experiences with ERS-1 SAR compositional accuracy. Proceedings of the Third IEEE Transactions Geoscience. Remote Sensing, IGARRS Symposium, 1993, Tokyo, Japan, pp. 1450–1452.

    Google Scholar 

  • Rothrock, D. A., Yu, Y., and Maykut, G. A., 1999. Thinning of the Arctic sea-ice cover. Geophysical Research Letters, 26(23), 3469–3472.

    Google Scholar 

  • Rott, H., and Markl, G., 1989. Improved snow and glacier monitoring by the Landsat Thematic Mapper. In Proceedings of a Workshop on Landsat Thematic Mapper Applications, ESA-SP-1102, European Space Agency, pp. 3–12.

    Google Scholar 

  • Rott, H., and Nagler, T., 1993. Capabilities of ERS-1 SAR for snow and glacier monitoring in alpine areas. In Proceedings, Second ERS-1 Symposium. Noordwijk: ESA Publications Division, ESA SP-361, pp. 1–6.

    Google Scholar 

  • Scambos, T. A., et al., 1992. Application of image cross-correlation to the measurement of glacial velocity using satellite image data. Remote Sensing of Environment, 42, 177–186.

    Google Scholar 

  • Scambos, T., et al. 2000, updated 2002. AVHRR Polar Pathfinder Twice-Daily 1.25 km EASE-Grid Composites. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Scambos, T., et al., 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sensing of Environment, 111, 242–257.

    Google Scholar 

  • Schutz, B., et al., 2005. ICESat mission overview and history. Geophysical Research Letters, 32, L21S01.

    Google Scholar 

  • Shepherd, A., and Wingham, D., 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science, 315, 1529–1532.

    Google Scholar 

  • Shi, J. C., and Dozier, J., 1993. Measurements of snow- and glacier-covered areas with single polarization SAR. Annals of Glaciology, 17, 72–76.

    Google Scholar 

  • Shi, J. C., and Dozier, J., 1996. Estimation of snow water equivalence using SISR-C/X-SAR. In Proceedings IGARRS 96, IEEE No. 96, Chap. 35875, pp. 2002–2004.

    Google Scholar 

  • Shi, J. C., and Dozier, J., 1997. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment, 59, 294–307.

    Google Scholar 

  • Shi, J. C., Dozier, J., and Rott, H., 1994. Snow mapping in alpine regions with synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 32, 152–158.

    Google Scholar 

  • Sievers, J., Grindel, A., and Meier, W., 1989. Digital satellite image mapping of Antarctica. Polarforschung, 59, 23–33.

    Google Scholar 

  • Smith, D. M., 1998. Observation of perennial Arctic sea ice melt and freeze-up using passive microwave data. Journal of Geophysical Research, 103(C12), 27,753–769.

    Google Scholar 

  • Smith, N. V., Saatchi, S. S., and Randerson, J. T., 2004. Trends in high northern latitudes soil freeze and thaw cycles from 1988 to 2002. Journal of Geophysical Research, 109, D12101.

    Google Scholar 

  • Spreen, G., Kaleschke, L., and Heygster, G., 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research, 113, C02S03, doi:10.1029/2005JC003384.

    Article  Google Scholar 

  • Stankov, B., and Gasiewski, A., 2004. CLPX-Airborne multiband Polarimetric Scanning Radiometer (PSR) Imagery. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Stroeve, J., and Nolin, A. W., 2002. New methods to infer snow albedo from the MISR instrument with applications to the Greenland ice sheet. IEEE Transactions Geoscience and Remote Sensing, 40, 1616–1625.

    Google Scholar 

  • Stroeve, J., Nolin, A., and Steffen, K., 1997. Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sensing of Environment, 62, 262–276.

    Google Scholar 

  • Stroeve, J., Markus, T., and Maslanik, J., 2001. Sensitivity analysis of operational passive microwave sea-ice algorithms. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARRS), 2001, pp. 1798–1800.

    Google Scholar 

  • Strozzia, T., et al., 2008. Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sensing of Environment, 112(3), 636–645.

    Google Scholar 

  • Stuart, K., et al., 2007. The Antarctic iceberg tracking database. http://www.scp.byu.edu/data/iceberg/database1.html

  • Surazakov, A. B., et al., 2007. Glacier changes in the Siberian Altai Mountains, Ob River basin, (1952–2006) estimated with high resolution satellite imagery. Environmental Research Letters, 2, 045017, 7 pp.

    Google Scholar 

  • Tait, A., 1998. Estimation of snow water equivalent using passive = microwave radiation data. Remote Sensing of the Environment, 64, 286–291.

    Google Scholar 

  • Tedesco, M., et al., 2005. Analysis of multiscale radiometric data collected during the Cold Land Processes Experiment-1 (CLPX-1). Geophysical Research Letters, 32, L18501.

    Google Scholar 

  • Tedesco, M., et al., 2006. Brightness temperatures of snow melting/refreezing cycles: observations and modeling using a multilayer dense medium theory-based model. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3563–3572.

    Google Scholar 

  • Vinje, T., Nordlund, N., and Kvambekk, A. 1998. Monitoring ice thickness in Fram Strait. Journal of Geophysical Research, 103(C5), doi:10.1029/97JC03360.

    Google Scholar 

  • Wadhams, P., and Doble, M. J., 2008. Digital terrain mapping of the underside of sea ice from a small AUV. Geophysical Research Letters, 35, L01501, doi:10.1029/2007GL031921.

    Article  Google Scholar 

  • Walker, A. E., and Davey, M. R., 1993. Observation of Great Slave Lake ice freeze-up and break-up processes using passive microwave satellite data. In Proceedings of the 16th Canadian Symposium on Remote Sensing, Sherbrooke, QC, pp. 233–238.

    Google Scholar 

  • Way, J. B., et al., 1997. Winter and spring thaw as observed with imaging radar at BOREAS. Journal of Geophysical Research, 102(29), 671–684.

    Google Scholar 

  • Williams Jr., R. S., and Ferrigno, J. G. (eds.), 1988. Satellite Image Atlas of Glaciers of the World, Antarctica. U.S. Geological Survey Professional Paper 1386-B, 288 pp.

    Google Scholar 

  • Williams, R. S., Jr., et al., 1982. Landsat images and mosaics of Antarctica for mapping and glaciological studies. Annals of Glaciology, 3, 321–326.

    Google Scholar 

  • Worby, A., et al., 1999. On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic. Cold Regions Science and Technology, 29, 49–58.

    Google Scholar 

  • Wynne, R. H., et al., 1998. Satellite monitoring of lake ice breakup on the Laurentian shield (1980–1994). Photogrammetric Engineering and Remote Sensing, 64, 607–617.

    Google Scholar 

  • Zhang, T., and Armstrong, R. L., 2001. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophysical Research Letters, 28(5), 763–766.

    Google Scholar 

  • Zhang, T., and Armstrong, R., 2003 updated 2005. Arctic Soil Freeze/Thaw Status from SMMR and SSM/I, Version 2. Digital Media. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.

    Google Scholar 

  • Zhang, T., Armstrong, R. L., and Smith, J., 2003. Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States: algorithm development and validation. Journal of Geophysical Research, 108(D22), 8860, doi:10.1029/2003JD003530.

    Article  Google Scholar 

  • Zhang, T., Barry, R. G., and Armstrong, R. L., 2004. Application of satellite remote sensing techniques to frozen ground studies. Polar Geography, 28(3), 163–196.

    Google Scholar 

  • Zhao, Y., Liu, A. K., and Long, D. G., 2002. Validation of sea ice motion from QuikSCAT with those from SSM/I and buoy. IEEE Transactions on Geoscience and Remote Sensing, 40, 1241–1246.

    Google Scholar 

  • Zhou, G., and Jezek, K., 2002. DISP Yearly Satellite Photographic Mosaics of Greenland 1962–1963. Digital Media. Boulder, CO: National Snow and Ice Data Center.

    Google Scholar 

  • Zuerndorfer, B., and England, A. W., 1992. Radio brightness decision criteria for frozen ground boundaries. IEEE Transactions on Geoscience and Remote Sensing, 30L, 89–102.

    Google Scholar 

  • Zwally, H. J., et al., 1983. Antarctic Sea Ice, 1973–1976; Satellite Passive-Microwave Observations. Washington, DC: NASA, SP 459, 206 pp.

    Google Scholar 

  • Zwally, H. J., et al., 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. Journal of Geophyiscal Research, 113, C02S15, doi:10.1029/2007JC004284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Barry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Barry, R. (2014). Cryosphere, Measurements and Applications. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_28

Download citation

Publish with us

Policies and ethics