Skip to main content

Mechanisms of Inflammation in HIV-Associated Dementia

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 764 Accesses

Abstract:

Human immunodeficiency virus type-1 (HIV-1) causes neuropsychiatric impairment in ∼60% of HIV-infected patients (Fischer-Smith and Rappaport, 2005, Expert Rev Mol Med 7(27): 1–26). HIV-1 is the most common viral cause of dementia and HIV-associated dementia (HAD) is the major form of dementia in the USA in the population <60 years old (Janssen, 1992; McArthur JC, Sacktor N, Selnes O, 1999, Semin Neurol 19(2): 129–150). HIV-1 enters the central nervous system (CNS) during the early stage of infection (Kramer-Hammerle S, Hahn A, Brack-Werner R, Werner T, 2005, Gene 358: 31–38) and then typically remains latent there for decades. Many factors can contribute to the neuropathology HAD, particularly the inflammatory action of glial cells (Corasaniti MT, Bagetta G, Rotiroti D, Nistico G, 1998, Biochem Pharmacol 56(2): 153–156; Kaul R, Dong T, Plummer FA, Kimani J, Rostron T, et al., 2001, J Clin Invest 107(10): 1303–1310; Kaul R, Garden GA, Lipton SA, 2001, Nature 410(6831): 988–994). If opportunistic infections have been ruled out as the etiology for neuropsychiatric impairment in HIV-positive patients, major clinical symptoms include deficits in short-term memory and concentration, lower extremity weakness, as well as slowness of hand movement, and depression (Janssen RS, Nwanyanwu OC, Selik RM, Stehr-Green JK, 1992, Neurology 42(8): 1472–1476; Reger M, Welsh R, Razani J, Martin DJ, Boone KB, 2002, J Int Neuropsychol Soc 8(3): 410–424). The terms AIDS dementia complex (ADC), and HAD, are synonymous in describing these symptoms caused by HIV in CNS infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZT:

azidothymidine

BBB:

blood–brain barrier

COX-2:

cyclooxygenase-2

CSF:

cerebral spinal fluid

EGCG:

epigallocatechin-3-gallate

5-LOX:

5-lipoxygenase

GM-CSF:

granulocyte macrophage colony-stimulating factor

HAART:

highly active antiretroviral therapy

HAD:

HIV-associated dementia

HIV-1:

Human immunodeficiency virus type-1

α-MSH:

α-melanocyte-stimulating hormone

IFN-γ:

Interferon-γ

iNOS:

inducible nitric oxide synthase

JAKs:

Janus-associated kinases

MAPK:

mitogen-activated protein kinase

MGCs:

multinucleated giant cells

MIP:

macrophage inflammatory proteins

MRI:

magnetic resonance imaging

OND:

other neurological diseases

PAF:

platelet-activating factor

PBMCs:

peripheral blood mononuclear cells

PCR:

polymerase chain reaction

PGE 2 :

Prostaglandin E 2

PHS:

prostaglandin H synthase

PKC:

protein kinase C

RT-PCR:

reverse transcriptase-PCR

SCID:

severe combined immunodeficient

STAT:

signal transducer and activator of transcription

TGF:

Tumor growth factor

TNF-Rs:

tumor necrosis factor receptor

TNF-α:

tumor necrosis factor-α

References

  • Achim CL, Heyes MP, Wiley CA. 1993. Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains. J Clin Invest 91(6): 2769–2775.

    CAS  PubMed  Google Scholar 

  • Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, et al. 1999. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73(1): 205–213.

    CAS  PubMed  Google Scholar 

  • Albright AV, Shieh JT, O'Connor MJ, Gonzalez-Scarano F. 2000. Characterization of cultured microglia that can be infected by HIV-1. J Neurovirol (Suppl 1): S53–S60.

    Google Scholar 

  • Albright AV, Vos RM, Gonzalez-Scarano F. 2004. Low-level HIV replication in mixed glial cultures is associated with alterations in the processing of p55 (Gag). Virology 325: 328–339.

    CAS  PubMed  Google Scholar 

  • An SF, Ciardi A, Giometto B, Scaravilli T, Gray F, et al. 1996. Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol (Berl) 91(5): 494–503.

    CAS  Google Scholar 

  • Anderson E, Zink W, Xiong H, Gendelman HE. 2002. HIV-1-associated dementia: A metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes. J Acquir Immune Defic Syndr 31(Suppl 2): S43–S54.

    CAS  PubMed  Google Scholar 

  • Aylward EH, Henderer JD, McArthur JC, Brettschneider PD, Harris GJ, et al. 1993. Reduced basal ganglia volume in HIV-1-associated dementia: Results from quantitative neuroimaging. Neurology 43(10): 2099–2104.

    CAS  PubMed  Google Scholar 

  • Bagetta G, Corasaniti MT, Berliocchi L, Navarra M, Finazzi-Agro A, et al. 1995. HIV-1 gp120 produces DNA fragmentation in the cerebral cortex of rat. Biochem Biophys Res Commun 211(1): 130–136.

    CAS  PubMed  Google Scholar 

  • Bagetta G, Corasaniti MT, Berliocchi L, Nistico R, Giammarioli AM, et al. 1999. Involvement of interleukin-1beta in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience 89(4): 1051–1066.

    CAS  PubMed  Google Scholar 

  • Bagetta G, Corasaniti MT, Malorni W, Rainaldi G, Berliocchi L, et al. 1996. The HIV-1 gp120 causes ultrastructural changes typical of apoptosis in the rat cerebral cortex. Neuroreport 7(11): 1722–1724.

    CAS  PubMed  Google Scholar 

  • Bagetta G, Corasaniti MT, Paoletti AM, Berliocchi L, Nistico R, et al. 1998. HIV-1 gp120-induced apoptosis in the rat neocortex involves enhanced expression of cyclo-oxygenase type 2 (COX-2). Biochem Biophys Res Commun 244(3): 819–824.

    CAS  PubMed  Google Scholar 

  • Balabanov R, Strand K, Kemper A, Lee JY, Popko B. 2006. Suppressor of cytokine signaling 1 expression protects oligodendrocytes from the deleterious effects of interferon-gamma. J Neurosci 26(19): 5143–5152.

    CAS  PubMed  Google Scholar 

  • Bank WA, Kastin AJ, Akerstrom V. 1997. HIV‐1 protein gp120 crosses the blood‐brain barrier: Role of adsorptive endocytosis. Life Sci 61(9): 119–125.

    Google Scholar 

  • Banks WA, Ercal N, Price TO. 2006. The blood–brain barrier in neuroAIDS. Curr HIV Res (3): 259–266.

    Google Scholar 

  • Barak O, Goshen I, Ben-Hur T, Weidenfeld J, Taylor AN, et al. 2002. Involvement of brain cytokines in the neurobehavioral disturbances induced by HIV-1 glycoprotein120. Brain Res 933(2): 98–108.

    CAS  PubMed  Google Scholar 

  • Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, et al. 1996. Cellular reservoirs of HIV‐1 in the central nervous system of infected individuals: Identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 10(6): 573–585.

    CAS  PubMed  Google Scholar 

  • Benveniste EN, 1994. Cytokine circuits in brain. Implications for AIDS dementia complex. Res publ Assoc Res Nerv Ment Dis 72: 71–88.

    CAS  PubMed  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Pozzan T, et al. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(6664): 281–285.

    CAS  PubMed  Google Scholar 

  • Blumberg HM, Moore P, Blanchard DK, Ray SM. 1996. Transmission of Mycobacterium tuberculosis among health care workers infected with human immunodeficiency virus. Clin Infect Dis 22(3): 597–598.

    CAS  PubMed  Google Scholar 

  • Brabers NA, Nottet HS. 2006. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest 36(7): 447–458.

    CAS  PubMed  Google Scholar 

  • Brack-Werner R. 1999. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS 13(1): 1–22.

    CAS  PubMed  Google Scholar 

  • Brandimarti R, Khan MZ, Fatatis A, Meucci O. 2004. Regulation of cell cycle proteins by chemokine receptors: A novel pathway in human immunodeficiency virus neuropathogenesis? J Neurovirol 10(Suppl 1): 108–112. Review.

    CAS  PubMed  Google Scholar 

  • Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, et al. 1988. Neuronal killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature (London) 335: 639–642.

    CAS  Google Scholar 

  • Bukrinskaya AG. 2004. HIV-1 assembly and maturation. Arch Virol 149(6): 1067–1082.

    CAS  PubMed  Google Scholar 

  • Buzy J, Brenneman DE, Pert CB, Martin A, Salazar A, et al. 1992. Potent gp120-like neurotoxic activity in the cerebrospinal fluid of HIV-infected individuals is blocked by peptide T. Brain Res 598(1–2): 10–18.

    CAS  PubMed  Google Scholar 

  • Calvo Manuel E, Arranz Garcia F, Sanchez-Portocarrero J, Roca Arbones V, Puente M, et al. 1995. [Alpha tumor necrosis factor in central nervous system disease associated with HIV infection]. An Med Interna 12(6): 263–266.

    CAS  PubMed  Google Scholar 

  • Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. 2005. Chemokine receptors in the central nervous system: Role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48(1): 16–42.

    CAS  PubMed  Google Scholar 

  • Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, et al. 2000. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74(6): 2373–2379.

    CAS  PubMed  Google Scholar 

  • Cheng‐Mayer C, Rutka JT, Rosenblum ML, McHugh T, Stites DP, Levy JA. 1987. Human immunodeficiency virus can productively infect cultured human glial cells. Proc Nat Acad Sci USA 84: 3526–3530.

    PubMed  Google Scholar 

  • Clapham PR, Weiss RA. 1997. Immunodeficiency viruses. Spoilt for choice of co-receptors. Nature 388(6639): 230–231.

    CAS  PubMed  Google Scholar 

  • Corasaniti MT, Bagetta G, Rotiroti D, Nistico G. 1998. The HIV envelope protein gp120 in the nervous system: Interactions with nitric oxide, interleukin-1beta and nerve growth factor signalling, with pathological implications in vivo and in vitro. Biochem Pharmacol 56(2): 153–156.

    CAS  PubMed  Google Scholar 

  • Corasaniti MT, Strongoli MC, Piccirilli S, Nistico R, Costa A, et al. 2000. Apoptosis induced by gp120 in the neocortex of rat involves enhanced expression of cyclooxygenase type 2 and is prevented by NMDA receptor antagonists and by the 21‐aminosteroid U‐74389G. Bioch Biophys Res Commun 274: 664–669.

    CAS  Google Scholar 

  • Corasaniti MT, Bilotta A, Strongoli MC, Navarra M, Bagetta G, et al. 2001a. HIV-1 coat protein gp120 stimulates interleukin-1beta secretion from human neuroblastoma cells: Evidence for a role in the mechanism of cell death. Br J Pharmacol 134(6): 1344–1350.

    CAS  Google Scholar 

  • Corasaniti MT, Maccarrone M, Nistico R, Malorni W, Rotiroti D, et al. 2001b. Exploitation of the HIV-1 coat glycoprotein, gp120, in neurodegenerative studies in vivo. J Neurochem 79(1): 1–8. Review.

    CAS  Google Scholar 

  • Corasaniti MT, Melino G, Navarra M, Garaci E, Finazzi-Agro A, et al. 1995. Death of cultured human neuroblastoma cells induced by HIV-1 gp120 is prevented by NMDA receptor antagonists and inhibitors of nitric oxide and cyclooxygenase. Neurodegeneration 4(3): 315–321.

    CAS  PubMed  Google Scholar 

  • Corasaniti MT, Piccirilli S, Paoletti A, Nistico R, Stringaro A, et al. 2001c. Evidence that the HIV-1 coat protein gp120 causes neuronal apoptosis in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor. Neurosci Lett 312(2): 67–70.

    CAS  Google Scholar 

  • Dal Pan GJ, McArthur JH, Aylward E, Selnes OA, Nance-Sproson TE, et al. 1992. Patterns of cerebral atrophy in HIV-1-infected individuals: Results of a quantitative MRI analysis. Neurology 42(11): 2125–2130.

    CAS  PubMed  Google Scholar 

  • Dawson JD, Lagakos SW. 1991. Analyzing laboratory marker changes in AIDS clinical trials. J Acquir Immune Defic Syndr 4: 667–676.

    CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM, Uhl GR, Snyder SH. 1993. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci USA 90(8): 3256–3259.

    CAS  PubMed  Google Scholar 

  • Dou H, Kingsley JD, Mosley RL, Gelbard HA, Gendelman HE. 2004. Neuroprotective strategies for HIV-1 associated dementia. Neurotox Res 6(7–8): 503–521.

    PubMed  Google Scholar 

  • Dreyer EB, Kaiser PK, Offermann JT, Lipton SA. 1990. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248: 364–367.

    CAS  PubMed  Google Scholar 

  • Dugas N, Kilchherr E, Delfraissy JF, Tardieu M. 2001. Role of CD23 in astrocytes inflammatory reaction during HIV-1 related encephalitis. Cytokine 15(2): 96–107.

    CAS  PubMed  Google Scholar 

  • Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, et al. 2006. HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci USA 103(41): 15160–15165.

    CAS  PubMed  Google Scholar 

  • Ensoli F, Cafaro A, Fiorelli V, Vannelli B, Ensoli B, et al. 1995. HIV-1 infection of primary human neuroblasts. Virology 210(1): 221–225.

    CAS  PubMed  Google Scholar 

  • Epstein J. 1993 Lack of risk of HIV transmission. Can Dent Assoc 59(8): 644.

    CAS  Google Scholar 

  • Everall IP, Luthert PJ, Lantos PL. 1991. Neuronal loss in the frontal cortex in HIV infection. Lancet 337: 1119–1121.

    CAS  PubMed  Google Scholar 

  • Everall IP, Luthert PJ, Lantos PL. 1993b. Neuronal number and volume alterations in the neocortex of HIV infected individuals. J Neurol Neurosurg Psychiatry 56: 481–486.

    CAS  Google Scholar 

  • Everall I, Luthert P, Lantos P. 1993c. A review of neuronal damage in human immunodeficiency virus infection: Its assessment, possible mechanism and relationship to dementia, J Neuropathol Exp Neurol 52: 561–566.

    CAS  Google Scholar 

  • Feng L, Sun W, Xia Y, Tang WW, Chanmugam P, et al. 1993. Cloning two isoforms of rat cyclooxygenase: Differential regulation of their expression. Arch Biochem Biophys 307(2): 361–368.

    CAS  PubMed  Google Scholar 

  • Fiebich BL, Schleicher S, Spleiss O, Czygan M, Hull M. 2001. Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: Possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. J Neurochem 79(5): 950–958.

    CAS  PubMed  Google Scholar 

  • Gabuzda DH, Ho DD, de Ia Monte SM, Hirsch MS, Rota TR, et al. 1986. Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 20: 289–295.

    CAS  PubMed  Google Scholar 

  • Gelbard HA, Dzenko KA, DiLoreto D, del Cerro C, del Cerro M, et al. 1993. Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: Implications for AIDS neuropathogenesis. Dev Neurosci 15(6): 417–422.

    CAS  PubMed  Google Scholar 

  • Geleziunas R, Schipper HM, Wainberg MA. 1992. Pathogenesis and therapy of HIV-1 infection of the central nervous system. AIDS 6(12): 1411–1426.

    CAS  PubMed  Google Scholar 

  • Gemma C, Smith EM, Hughes Jr TK, Opp MR, 2000. Human immunodeficiency virus glycoprotein 160 induces cytokine mRNA expression in the rat central nervous system. Cell Mol Neurobiol 20(4): 419–431.

    CAS  PubMed  Google Scholar 

  • Gendelman HE, Meltzer MS. 1989. Mononuclear phagocytes and the human immunodeficiency virus. Curr Opin Immunol 2: 414–419.

    PubMed  Google Scholar 

  • Gendelman HE, Genis P, Jett M, Zhai QH, Nottet HS. 1994. An experimental model system for HIV-1-induced brain injury. Adv Neuroimmunol 4(3): 189–193.

    CAS  PubMed  Google Scholar 

  • Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, et al. 1992. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)‐infected macrophage‐astroglia interactions: Implications for the neuropathogenesis of HIV disease. J Exp Med 176: 1703–1718.

    CAS  PubMed  Google Scholar 

  • Ghafouri M, Amini S, Khalili K, Sawaya BE. 2006. HIV-1 associated dementia: Symptoms and causes. Retrovirology 3: 28.

    PubMed  Google Scholar 

  • Giulian D, Vaca K, Noonan CA. 1990. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250: 1593–1596.

    CAS  PubMed  Google Scholar 

  • Giulian D, Wendt E, Vaca K, Noonan CA. 1993. The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Proc Nat Acad Sci USA 90: 2769–2773.

    CAS  PubMed  Google Scholar 

  • Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, et al. 2004. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull 64(2): 165–170.

    CAS  PubMed  Google Scholar 

  • Giunta B, Obregon D, Hou H, Zeng J, Sun N, et al. 2006. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: Role of JAK/STAT1 signaling and implications for HIV-associated dementia. Brain Res 1123(1): 216–225.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J. 2005. The neuropathogenesis of AIDS. Nat Rev Immunol 5: 69–81.

    CAS  PubMed  Google Scholar 

  • Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, et al. 2003. Astrocyte infection by HIV-1: Mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1(4): 463–473.

    CAS  PubMed  Google Scholar 

  • Gorry P, Purcell D, Howard J, McPhee D. 1998. Restricted HIV-1 infection of human astrocytes: Potential role of nef in the regulation of virus replication. J Neurovirol 4: 377–386.

    CAS  PubMed  Google Scholar 

  • Grassi MP, Clerici F, Vago L, Perin C, Borella M, et al. 2002. Clinical aspects of the AIDS dementia complex in relation to histopathological and immunohistochemical variables. Eur Neurol 47(3): 141–147.

    CAS  PubMed  Google Scholar 

  • Griffin DE, Wesselingh SL, McArthur JC. 1994. Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann Neurol 35(5): 592–597.

    CAS  PubMed  Google Scholar 

  • Hall M, Whaley R, Robertson K, Hamby S, Wilkins J, et al. 1996. The correlation between neuropsychological and neuroanatomic changes over time in asymptomatic and symptomatic HIV-1-infected individuals. Neurology 46(6): 1697–1702.

    CAS  PubMed  Google Scholar 

  • Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, et al. 1998. Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr Biol 8(10): 595–598.

    CAS  PubMed  Google Scholar 

  • Horvath CM. 2004. The Jak-STAT pathway stimulated by interferon gamma. Sci STKE (260): tr8.

    Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, et al. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885.

    CAS  PubMed  Google Scholar 

  • Ioannidis JP, Reichlin S, Skolnik PR. 1995. Long-term productive human immunodeficiency virus-1 infection in human infant microglia. Am J Pathol 147(5): 1200–1206.

    CAS  PubMed  Google Scholar 

  • Janssen RS, Nwanyanwu OC, Selik RM, Stehr-Green JK. 1992. Epidemiology of human immunodeficiency virus encephalopathy in the United States. Neurology 42(8): 1472–1476.

    CAS  PubMed  Google Scholar 

  • Jones MV, Bell JE, Nath A. 2000. Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS 14(17): 2709–2713.

    CAS  PubMed  Google Scholar 

  • Jordan CA, Watkins BA, Kufta C, Dubois-Dalcq M. 1991. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol 65(2): 736–742.

    CAS  PubMed  Google Scholar 

  • Kaul R, Dong T, Plummer FA, Kimani J, Rostron T, et al. 2001a. CD8(+) lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest 107(10): 1303–1310.

    CAS  Google Scholar 

  • Kaul M, Garden GA, Lipton SA. 2001b. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831): 988–994.

    CAS  Google Scholar 

  • Kaul M, Lipton SA. 1999. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 96(14): 8212–8216.

    CAS  PubMed  Google Scholar 

  • Kaul M, Lipton SA. 2006. Mechanisms of neuronal injury and death in HIV‐1 associated dementia. Curr HIV Res 4: 307–318.

    CAS  PubMed  Google Scholar 

  • Kaul R, Plummer FA, Kimani J, Dong T, Kiama P, et al. 2000. HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi. J Immunol 164(3): 1602–1611.

    CAS  PubMed  Google Scholar 

  • Ketzler S, Weis S, Haug H, Budka H. 1990. Loss of neurons in the frontal cortex in AIDS brains. Acta Neuropathol 80: 92–94.

    CAS  PubMed  Google Scholar 

  • Kilzer JM, Stracker T, Beitzel B, Meek K, Weitzman M, et al. 2003. Roles of host cell factors in circularization of retroviral DNA. Virology 314(1): 460–467.

    CAS  PubMed  Google Scholar 

  • Koenig S, Gendelman HE, Orenstein TM, dal Canto MC, Pezeshkpour GH, et al. 1986. Detectionof AIDS virus in macrophages brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093.

    CAS  PubMed  Google Scholar 

  • Kohler JJ, Tuttle DL, Coberley CR, Sleasman JW, Goodenow MM. 2003. Human immunodeficiency virus type 1 (HIV-1) induces activation of multiple STATs in CD4+ cells of lymphocyte or monocyte/macrophage lineages. J Leukoc Biol 73(3): 407–416.

    CAS  PubMed  Google Scholar 

  • Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, et al. 1987. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236: 819–822.

    CAS  PubMed  Google Scholar 

  • Kramer-Hammerle S, Hahn A, Brack-Werner R, Werner T. 2005. Elucidating effects of long-term expression of HIV-1 Nef on astrocytes by microarray, promoter, and literature analyses. Gene 358: 31–38.

    PubMed  Google Scholar 

  • Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. 1997. Defective TNF‐alpha‐induced apoptosis in STAT1‐null cells due to low constitutive levels of caspases. Science 278: 1630–1632.

    CAS  PubMed  Google Scholar 

  • Kure K, Lyman WD, Weidenheim KM, Dickson DW. 1990. Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method. Am J Pathol 136: 1085–1092.

    CAS  PubMed  Google Scholar 

  • Laverda AM, Gallo P, De Rossi A, Sivieri S, Cogo P, et al. 1994. Cerebrospinal fluid analysis in HIV-1-infected children: Immunological and virological findings before and after AZT therapy. Acta Paediatr 83(10): 1038–1042.

    CAS  PubMed  Google Scholar 

  • Lavi E, Kolson DL, Ulrich AM, Fu L, Gonzalez‐Scarano F. 1998. Chemokine receptors in the human brain and their relationship to HIV infection. J Neurovirol 4: 301–311.

    CAS  PubMed  Google Scholar 

  • Lawrence DM, Major EO. 2002. HIV-1 and the brain: Connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 4(3): 301–308.

    CAS  PubMed  Google Scholar 

  • Lee KY, Anderson E, Madani K, Rosen GD. 1999. Loss of STAT1 expression confers resistance to IFN-gamma-induced apoptosis in ME180 cells. FEBS Lett 459(3): 323–326.

    CAS  PubMed  Google Scholar 

  • Levy JA, Hsueh F, Blackbourn DJ, Wara D, Weintrub PS. 1998. CD8 cell noncytotoxic antiviral activity in human immunodeficiency virus-infected and -uninfected children. J Infect Dis 177(2): 470–472.

    CAS  PubMed  Google Scholar 

  • Li W, Galey D, Mattson MP, Nath A. 2005. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 8(1–2): 119–134.

    CAS  PubMed  Google Scholar 

  • Lipton, SA, Sucher, NJ, Kaiser, PK, Dreyer, EB. 1991. Synergistic effects of HIV coat protein and NMDA receptor‐mediated neurotoxicity. Neuron 7: 111–118.

    CAS  PubMed  Google Scholar 

  • Lipton SA. 1996. Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol 6(4): 507–517.

    CAS  PubMed  Google Scholar 

  • Lipton SA, Kaiser PK, Sucher NJ, Dreyer EB, Offerman JT. 1990. AIDS virus coat protein sensitized neurons to NMDA receptor mediated toxicity. Soc Neurosci Abstr 16: 268.

    Google Scholar 

  • Ludwig E, Silberstein FC, van J, Empel Erfle V, Neumann M, et al. 1999. Diminished rev‐mediated stimulation of human immunodeficiency virus type 1 protein synthesis is a hallmark of human astrocytes. J Virol 73: 8279–8289.

    CAS  PubMed  Google Scholar 

  • Maccarrone M, Navarra M, Corasaniti MT, Nistico G, Finazzi Agro A. 1998. Cytotoxic effect of HIV-1 coat glycoprotein gp120 on human neuroblastoma CHP100 cells involves activation of the arachidonate cascade. Biochem J 333(Pt 1): 45–49.

    CAS  PubMed  Google Scholar 

  • Maccarrone M, Bari M, Corasaniti MT, Nistico R, Bagetta G, et al. 2000. HIV‐1 coat glycoprotein gp120 induces apoptosis in rat brain neocortex by deranging the arachidonate cascade in favor of Prostanoids. J Neurochem 75: 196–203.

    CAS  PubMed  Google Scholar 

  • Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, et al. 1992. Spectrum of human immunodeficiency virus‐associated neocortical damage. Ann Neurol 32: 321–329.

    CAS  PubMed  Google Scholar 

  • Masliah E, Ge N, Achim CL, Wiley CA. 1994. Cytokine receptor alterations during HIV infection in the human central nervous system. Brain Res 663(1): 1–6.

    CAS  PubMed  Google Scholar 

  • Masliah E, Ge N, Mucke L. 1996. Pathogenesis of HIV-1 associated neurodegeneration. Crit Rev Neurobiol 10(1): 57–67.

    CAS  PubMed  Google Scholar 

  • McArthur JC, Sacktor N, Selnes O. 1999. Human immunodeficiency virus-associated dementia. Semin Neurol 19(2): 129–150.

    CAS  PubMed  Google Scholar 

  • McCarthy M, He J, Wood C. 1998. HIV-1 strain-associated variability in infection of primary neuroglia. J Neurovirol 4(1): 80–89.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Chen IS. 1991. HIV-1 macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J 5: 2391–2399.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Koyanagi Y, Chen IS. 1989. Interleukin‐1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63: 4404–4408.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Koyanagi Y, Zack J, Thomas L, Martin F, et al. 1992. Induction of interleukin‐1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol 66: 2217–2225.

    CAS  PubMed  Google Scholar 

  • Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, et al. 1998. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95(24): 14500–14505.

    CAS  PubMed  Google Scholar 

  • Michaels J, Price RW, Rosenblum MK. 1988. Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: Proliferation, infection and fusion. Acta Neuropathol 76: 373–379.

    CAS  PubMed  Google Scholar 

  • Mizrachi Y, Rodriguez I, Sweetnam PM, Rubinstein A, Volsky DJ. 1994. HIV type 1 infection of human cortical neuronal cells: Enhancement by select neuronal growth factors. AIDS Res Hum Retroviruses 10(12): 1593–1596.

    CAS  PubMed  Google Scholar 

  • Moore JP, Kitchen SG, Pugach P, Zack JA. 2004. The CCR5 and CXCR4 coreceptors – central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 20(1): 111–126.

    CAS  PubMed  Google Scholar 

  • Munno I, Pellegrino NM, Marcuccio C, Conrotto L, Jirillo E, et al. 1992. Neurological damage mediated by cytokines. Cattedra di Immunologia, Universita di Bari, Italy. Acta Neurol (Napoli) 14(2): 81–89.

    CAS  Google Scholar 

  • Nath A, Conant K, Chen P, Scott C, Major EO. 1999. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J Biol Chem 274(24): 17098–17102.

    CAS  PubMed  Google Scholar 

  • Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, et al. 1996. Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70(3): 1475–1480.

    CAS  PubMed  Google Scholar 

  • Navia BA, Rostasy K. 2005. The AIDS dementia complex: Clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 8(1–2): 3–24.

    CAS  PubMed  Google Scholar 

  • Neumann M, Afonina E, Ceccherini‐Silberstein F, Schlicht S, Erfle V, et al. 2001a. Nucleocytoplasmic transport in human astrocytes: Decreased nuclear uptake of the HIV Rev shuttle protein. J Cell Sci 114: 1717–1729.

    CAS  Google Scholar 

  • Neumann M, Afonina E, Ceccherini‐Silberstein F, Schlicht S, Erfle V, et al. 2001b. Nucleocytoplasmic transport in human astrocytes: Decreased nuclear uptake of the HIV Rev shuttle protein. J Cell Sci 114: 1717–1729.

    CAS  Google Scholar 

  • Nielsen MH, Pedersen FS, Kjems J. 2005. Molecular strategies to inhibit HIV-1 replication. Retrovirology 2(1): 10.

    PubMed  Google Scholar 

  • Nottet HS. 1999. Interactions between macrophages and brain microvascular endothelial cells: Role in pathogenesis of HIV-1 infection and blood–brain barrier function. J Neurovirol 5(6): 659–669.

    CAS  PubMed  Google Scholar 

  • Nuovo GJ, Becker J, Burk MW, Margiotta M, Fuhrer J, et al. 1994. In situ detection of PCR-amplified HIV-1 nucleic acids in lymph nodes and peripheral blood in patients with asymptomatic HIV-1 infection and advanced-stage AIDS. J Acquir Immune Defic Syndr 7(9): 916–923.

    CAS  PubMed  Google Scholar 

  • O'Brien WA, Koyanagi Y, Namazie A, Zhao JQ, Diagne A, et al. 1990. HIV-l tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348: 69–73.

    PubMed  Google Scholar 

  • Obregon E, Punzon C, Fernandez-Cruz E, Fresno M, Munoz-Fernandez MA. 1999. HIV-1 infection induces differentiation of immature neural cells through autocrine tumor necrosis factor and nitric oxide production. Virology 261: 193–204.

    CAS  PubMed  Google Scholar 

  • Okamoto M, Ono M, Baba M. 2001. Suppression of cytokine production and neural cell death by the anti-inflammatory alkaloid cepharanthine: A potential agent against HIV-1 encephalopathy. Biochem Pharmacol 62(6): 747–753.

    CAS  PubMed  Google Scholar 

  • Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, et al. 2006. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia 54(6): 619–629.

    PubMed  Google Scholar 

  • Pereira CF, Boven LA, Middel J, Verhoef J, Nottet HS. 2000. Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions. J Leukoc Biol 68(3): 423.

    CAS  PubMed  Google Scholar 

  • Pereira CF, Middel J, Jansen G, Verhoef J, Nottet HS. 2001. Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol 115(1–2): 168–175.

    CAS  PubMed  Google Scholar 

  • Perrella O, Carrieri PB, Guarnaccia D, Soscia M. 1992. Cerebrospinal fluid cytokines in AIDS dementia complex. J Neurol 239(7): 387–388.

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE. 1997. An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 3(6): 401–416.

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Limoges J, Rasmussen J, Zheng J, Gearing A, et al. 2001. Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFalpha inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol 114(1–2): 57–56.

    CAS  PubMed  Google Scholar 

  • Persidsky Y, Stins M, Way D, Witte MH, Weinand M, et al. 1997. A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol 158(7): 3499–3451.

    CAS  PubMed  Google Scholar 

  • Petito CK, Roberts B. 1995. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146(5): 1121–1130.

    CAS  PubMed  Google Scholar 

  • Power C, McArthur JC, Nath A, Wehrly K, Mayne M, et al. 1998. Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented. J Virol 72(11): 9045–9053.

    CAS  PubMed  Google Scholar 

  • Price DA, Meier UC, Klenerman P, Purbhoo MA, Phillips RE, et al. 1998. The influence of antigenic variation on cytotoxic T lymphocyte responses in HIV‐1 infection. J Mol Med 76: 699–708.

    CAS  PubMed  Google Scholar 

  • Pugh CR, Johnson JD, Martin D, Rudy JW, Maier SF, et al. 2000. Human immunodeficiency virus-1 coat protein gp120 impairs contextual fear conditioning: A potential role in AIDS related learning and memory impairments. Brain Res 861(1): 8–15.

    CAS  PubMed  Google Scholar 

  • Pulliam L, Clarke JA, McGrath MS, Moore D, McGuire D. 1996. Monokine products as predictors of AIDS dementia. AIDS 10(13): 1495–1500.

    CAS  PubMed  Google Scholar 

  • Pulliam L, West D, Haigwood N, Swanson RA. 1993. HIV‐1 envelope gp120 alters astrocytes in human brain cultures. AIDS Res Hum Retroviruses 9: 439–444.

    CAS  PubMed  Google Scholar 

  • Pulliam L, Clarke JA, McGuire D, McGrath MS. 1994. Investigation of HIV-infected macrophage neurotoxin production from patients with AIDS dementia. Adv Neuroimmunol 4(3): 195–198.

    CAS  PubMed  Google Scholar 

  • Pulliam L, Herndier BG, Tang NM, McGrath MS. 1991. Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J Clin Invest 87(2): 503–512.

    CAS  PubMed  Google Scholar 

  • Ramana CV, Gil MP, Schreiber RD, Stark GR. 2002. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol 23(2): 96–101.

    CAS  PubMed  Google Scholar 

  • Sabri F, Tresoldi E, Di Stefano M, Polo S, Monaco MC, et al. 1999. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: Independence from CD4 and major chemokine receptors. Virology 264(2): 370–384.

    CAS  PubMed  Google Scholar 

  • Saito K. 1995. Biochemical studies on AIDS dementia complex – possible contribution of quinolinic acid during brain damage. Rinsho Byori 43(9): 891–901.

    CAS  PubMed  Google Scholar 

  • Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA, et al. 1998. Chemokines and receptors in HIV encephalitis. AIDS 12(9): 1021–1026.

    CAS  PubMed  Google Scholar 

  • Santosh CG, Bell JE, Best JJ. 1995. Spinal tract pathology in AIDS: Postmortem MRI correlation with neuropathology. Neuroradiology 37(2): 134–138.

    CAS  PubMed  Google Scholar 

  • Seelamgari A, Maddukuri A, Berro R, de la Fuente C, Kehn K, et al. 2004. Role of viral regulatory and accessory proteins in HIV-1 replication. Front Biosci 9: 2388–2413.

    CAS  PubMed  Google Scholar 

  • Shapshak P, Duncan R, Minagar A, Rodriguez de la Vega P, Stewart RV, et al. 2004. Elevated expression of IFN-gamma in the HIV-1 infected brain. Front Biosci 9: 1073–1081.

    CAS  PubMed  Google Scholar 

  • Shioda T, Levy JA, Cheng-Mayer C. 1991. Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349: 167–169.

    CAS  PubMed  Google Scholar 

  • Si Q, Cosenza M, Zhao ML, Goldstein H, Lee SC. 2002. GM-CSF and M-CSF modulate beta-chemokine and HIV-1 expression in microglia. Glia 39(2): 174–183.

    PubMed  Google Scholar 

  • Simon D, Lindberg RL, Kozlowski E, Braathen LR, Simon HU. 2006. Epidermal caspase-3 cleavage associated with interferon-gamma-expressing lymphocytes in acute atopic dermatitis lesions. Exp Dermatol 15(6): 441–446.

    CAS  PubMed  Google Scholar 

  • Singh KK, Hughes MD, Chen J, Spector SA. 2004. Lack of protective effects of interleukin-4–589-C/T polymorphism against HIV-1-related disease progression and central nervous system impairment, in children. J Infect Dis 189(4): 587–592.

    CAS  PubMed  Google Scholar 

  • Sippy BD, Hofman FM, Wallach D, Hinton DR. 1995. Increased expression of tumor necrosis factor-alpha receptors in the brains of patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol 10(5): 511–521.

    CAS  PubMed  Google Scholar 

  • Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, et al. 2001. Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J Neurovirol 7(1): 56–60.

    CAS  PubMed  Google Scholar 

  • Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, et al. 2000. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem 275: 10002–10008.

    CAS  PubMed  Google Scholar 

  • Stins MF, Shen Y, Huang SH, Gilles F, Kalra VK, et al. 2001. Gp120 activates children's brain endothelial cells via CD4. J Neurovirol (2): 125–134.

    Google Scholar 

  • Stoler MH, Eskin TA, Benn S, Angerer RC, Angerer LM. 1986. Human T‐cell lymphotropic virus type III infection of the central nervous system. A preliminary in situ analysis. JAMA 256: 2360–2364.

    CAS  PubMed  Google Scholar 

  • Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, et al. 1998. Progressive cerebral volume loss in human immunodeficiency virus infection: A longitudinal volumetric magnetic resonance imaging study. Arch Neuro 55(2): 161–168.

    CAS  Google Scholar 

  • Sundar KS, Kamaraju LS, Dingfelder J, McMahon J, Gollapudi S, et al. 1995. Beta-endorphin enhances the replication of neurotropic human immunodeficiency virus in fetal perivascular microglia. J Neuroimmunol 61(1): 97–104.

    CAS  PubMed  Google Scholar 

  • Takagi Y, Harada J, Chiarugi A, Moskowitz MA. 2002. STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury. J Cereb Blood Flow Metab 11: 1311–1318.

    Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, et al. 1996. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol 39(6): 705–711.

    CAS  PubMed  Google Scholar 

  • Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, et al. 2005. Thinning of cerebral cortex visualized in HIV/AIDS reflects CD4+ T-lymphocyte decline. PNAS 102(43): 15647–15652.

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372): 768–774.

    CAS  PubMed  Google Scholar 

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, et al. 1994. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367(6459): 188–193.

    CAS  PubMed  Google Scholar 

  • Tong N, Perry SW, Zhang Q, James HJ, Guo H, et al. 2000. Neuronal fractalkine expression in HIV-1 encephalitis: Roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164(3): 1333–1339.

    CAS  PubMed  Google Scholar 

  • Torre, D, Zeroli, C, Ferraro, G, Speranza, F, Tambini, R, et al. 1992. Cerebrospinal fluid levels of IL‐6 in patients with acute infections of the central nervous system. Scand J Infect Dis 24: 787–791.

    CAS  PubMed  Google Scholar 

  • Tringali G, Dello Russo C, Preziosi P, Navarra P. 1998. Hypothalamic interleukin-1 in physiology and pathology. Toxicol Lett 102–103: 295–299.

    PubMed  Google Scholar 

  • Trillo‐Pazos G, Diamanturos A, Rislove L, Menza T, Chao W, et al. 2003. Detection of HIV‐1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV‐1 encephalitis by laser capture microdissection. Brain Pathol 3: 144–154.

    Google Scholar 

  • Trkola A, Kuster H, Leemann C, Oxenius A, Fagard C, et al. 2004. Humoral immunity to HIV-1: Kinetics of antibody responses in chronic infection reflects capacity of immune system to improve viral set point. Blood 104(6): 1784–1792.for Swiss HIV Cohort Study.

    CAS  PubMed  Google Scholar 

  • Tyor WR, Glass JD, Griffin JW, Becker PS, McArthur JC, et al. 1992. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol 31(4): 349–360.

    CAS  PubMed  Google Scholar 

  • Tyor WR, Wesselingh SL, Griffin JW, McArthur JC, Griffin DE. 1995. Unifying hypothesis for the pathogenesis of HIV-associated dementia complex, vacuolar myelopathy, and sensory neuropathy. J Acquir Immune Defic Syndr Hum Retrovirol 9(4): 379–388.

    CAS  PubMed  Google Scholar 

  • Vallat AV, De Girolami U, He J, Mhashilkar A, Marasco W, et al. 1998. Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152(1): 167–178.

    CAS  PubMed  Google Scholar 

  • Vander Meer P, Ulrich AM, Gonzalez-Scarano F, Lavi E. 2000. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: Potential mechanisms for HIV dementia. Exp Mol Pathol 69(3): 192–201.

    CAS  Google Scholar 

  • Vitkovic L. 1997. Neuropathogenesis of HIV-1 infection: Interactions between interleukin-1 and transforming growth factor-beta 1. Arch Anat Cytol Pathol 45(2–3): 75–85.

    Google Scholar 

  • Vitkovic L, Chatham JJ, da Cunha A. 1995. Distinct expressions of three cytokines by IL-1-stimulated astrocytes in vitro and in AIDS brain. Brain Behav Immun 9: 378–388.

    CAS  PubMed  Google Scholar 

  • Wang J, Alvarez R, Roderiquez G, Guan E, Norcross MA. 2004. Constitutive association of cell surface CCR5 and CXCR4 in the presence of CD4. J Cell Biochem 93: 753–760.

    CAS  PubMed  Google Scholar 

  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, et al. 1990. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science 249(4968): 549–553.

    CAS  PubMed  Google Scholar 

  • Wesselingh SL, Glass J, McArthur JC, Griffin JW, Griffin DE. 1994. Cytokine dysregulation in HIV-associated neurological disease. Adv Neuroimmunol (3): 199–206.

    Google Scholar 

  • Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, et al. 1993. Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33(6): 576–582.

    CAS  PubMed  Google Scholar 

  • Westmoreland SV, Kolson D, Gonzalez-Scarano F. 1996. Toxicity of TNF alpha and platelet activating factor for human NT2N neurons: A tissue culture model for human immunodeficiency virus dementia. J Neurovirol 2(2): 118–126.

    CAS  PubMed  Google Scholar 

  • Wiley CA, Schreier RD, Nelson JA, Lampert PW, Oldstone MBA. 1986. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83: 7089–7093.

    CAS  PubMed  Google Scholar 

  • Wu Y, Marsh JW. 2001. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293(5534): 1503–1506.

    CAS  PubMed  Google Scholar 

  • Wu Y, Marsh JW. 2003. Early transcription from nonintegrated DNA in human immunodeficiency virus. J Virol 19: 10376–1038.

    Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF. 1993. Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron 11(2): 371–386.

    CAS  PubMed  Google Scholar 

  • Zhao ML, Kim MO, Morgello S, Lee SC. 2001. Expression of inducible nitric oxide synthase, interleukin-1 and caspase-1 in HIV-1 encephalitis. J Neuroimmunol 115(1–2): 182–191.

    CAS  PubMed  Google Scholar 

  • Zaitseva M, Peden K, Golding H. 2003. HIV coreceptors: Role of structure, posttranslational modifications, and internalization in viral-cell fusion and as targets for entry inhibitors. Biochem Biophys Acta 1614: 51–61.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Giunta, B., Fernandez, F., Tan, J. (2008). Mechanisms of Inflammation in HIV-Associated Dementia. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_19

Download citation

Publish with us

Policies and ethics