Skip to main content

14-3-3 Proteins in Brain function

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

14‐3‐3 proteins were discovered by Moore and Perez in the soluble extract of bovine brain in 1967. These proteins are highly abundant in the brain. In this chapter, the discovery of 14‐3‐3 protein, the structure of 14‐3‐3, the cloning of 14‐3‐3 complementary DNA (cDNA), the nucleotide sequence of 14‐3‐3 cDNA, the structure of the 14‐3‐3 gene, the occurrence of 14‐3‐3 messenger RNA (mRNA) in the brain, the function and regulation of 14‐3‐3 protein, the binding of 14‐3‐3 protein to other proteins, the effects of 14‐3‐3 on the binding of one protein to another, the effects of 14‐3‐3 on protein kinase, and the neuropathology of 14‐3‐3 are described concisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer's disease

ALS:

amyotrophic lateral sclerosis

ASK:

apoptosis signal‐regulating kinase

BAD:

Bel‐xL/Bel‐2‐associated death promoter

cAMP:

cyclic adenosine monophosphate

CBP:

CREB‐binding protein

Cdc:

cell division cycle

C. elegans :

Caenorhabditis elegans

CRE:

cAMP response element

CJD:

Creutzfeldt–Jakob disease

CSF:

cerebrospinal fluid

cTAK:

Cdc25c‐associated kinase

DEAE cellulose:

diethylaminoethyl cellulose

DLBD:

diffuse Lewy body disorder

FISH:

fluorescence in situ hybridization

FKALR1:

forkhead transcription factor

GSK3β:

glycogen synthase kinase‐3β

HPLC:

high‐performance liquid chromatography

JNK:

C‐JunNH(2) terminal kinase

KLC:

kinesin light chain

KSR:

kinase suppressor of ras

LTP:

long‐term potentiation

MS/MS:

tandem mass spectrometry

mRNA:

messenger ribonucleic acid

NFTs:

neurofibrillary tangles

PCR:

polymerase chain reaction

PC12:

pheochromocytoma cell 12

Poly(A):

polyadenylic acid

PD:

Parkinson's disease

PKC:

protein kinase C

SCA1:

spinocerebellar ataxia type 1

SDK1:

sphingosine‐dependent protein kinase 1

SDS‐PAGE:

sodium dodecylsulfate‐polyacrylamide gel electrophoresis

TAB:

TATA‐binding protein

TAFII:

TAB‐associated factor II

References

  • Aitken A. 1996. 14‐3‐3 and its possible role in co‐ordinating multiple signaling pathways. Trends Cell Biol 6: 341–347.

    CAS  PubMed  Google Scholar 

  • Aitken A. 2002. 14‐3‐3 proteins in cell regulation. Biochem Soc Trans 30: 351–421.

    CAS  PubMed  Google Scholar 

  • Baxter HC, Liu WG, Forster JL, Aitken A, Fraser JR. 2002. Immunolocalization of 14‐3‐3 isoforms in normal and scrapie‐infected murine brain. Neuroscience 109: 5–14.

    CAS  PubMed  Google Scholar 

  • Bell R, Munro J, Russ C, Powel JF, Bruinvels A, et al 2000. Systematic screening of the 14‐3‐3 eta (η) chain gene for polymorphic variants and case‐control analysis in schizophrenia. Am J Med Genet 96: 736–743.

    CAS  PubMed  Google Scholar 

  • Beranova‐Giorgianni S, Pabst MJ, Russel TM, Giorgianni F, Goldowitz D, et al 2002. Preliminary analysis of the mouse cerebellum proteome. Mol Brain Res 98: 135–140.

    PubMed  Google Scholar 

  • Berg D, Holzmann C, Riess O. 2003a. 14‐3‐3 proteins in the nervous system. Nature Rev Neurosci 4: 752–762.

    CAS  Google Scholar 

  • Berg D, Riess O, Bornemiann A. 2003b. Specification of 14‐3‐3 proteins in Lewy bodies. Ann Neurol 54:135.

    Google Scholar 

  • Bialkowska K, Zaffran Y, Meyer SC, Fox JEB. 2003. 14‐3‐3 ζ mediates integrin‐induced activation of Cdc42 and Rac. J Biol Chem 278: 33342–33350.

    CAS  PubMed  Google Scholar 

  • Bogoch S. 1969. Proteins. Handbook of neurochemistry. Lajtha. A, editor. New York: Plenum Press; Vol. 1 pp. 75–92

    Google Scholar 

  • Boston PF, Jackson P, Kynoch PAM, Thompson RJ. 1982a. Purification, properties and immunohistochemical localization of human brain 14‐3‐3 protein. J Neurochem 38: 1466–1474.

    CAS  Google Scholar 

  • Boston PF, Jackson P, Thompson RJ. 1982b. Human 14‐3‐3 protein: radioimmunoassay, tissue distribution and cerebrospinal fluid levels in patients with neurological disorders. J Neurochem 38:1475–1482.

    CAS  Google Scholar 

  • Brasselman S, McCormick F. 1995. BCR and RAF form a complex in vivo via 14‐3‐3 proteins. EMBO J 14: 4839–4848.

    Google Scholar 

  • Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, et al 2001. Phosphatidylinositol 3‐kinase signaling inhibits DAF‐16 DNA binding and function via 14‐3‐3 dependent and 14‐3‐3 independent pathways. J Biol Chem 276: 13402–13410.

    CAS  PubMed  Google Scholar 

  • Chan TA, Hermeking H, Lenganer C, Kingler KW, Vogelstein B. 1999. 14‐3‐3 is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620.

    CAS  PubMed  Google Scholar 

  • Chen HK, Fernandez‐Funez P, Acevedo SF, Lam YC, Kaytor MD, et al 2003. Interaction of Akt‐phosphorylated ataxin‐1 with 14‐3‐3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113: 457–468.

    CAS  PubMed  Google Scholar 

  • Chen F, Wagner PD. 1994. 14‐3‐3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett 347: 128–132.

    CAS  PubMed  Google Scholar 

  • Cotelle V, Meck SE, Provan F, Milne FC, Morrice N, et al 2000. 14‐3‐3s regulate global cleavage of their diverse binding partners in sugar‐starved Arabidopsis cells. EMBO J 19: 2869–2876.

    CAS  PubMed  Google Scholar 

  • Dalal SN, Schweitzer CM, Gan J, De‐ Caprio GA. 1999. Cytoplasmic localization of human cdc25c during interphase requires an intact 14‐3‐3 binding site. Mol Cell Biol 19: 4465–4479.

    CAS  PubMed  Google Scholar 

  • Datta SR, Katsov A, Hu L, Petros A, Fesik SW, et al 2000. 14‐3‐3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6: 41–51.

    CAS  PubMed  Google Scholar 

  • Dent P, Jelinek T, Morrison DK, Weber MJ, Sturgill TW. 1995. Reversal of Raf‐1 activation by purified and membrane‐associated protein phosphatases. Science 268: 1902–1906.

    CAS  PubMed  Google Scholar 

  • Dougherty MK, Morrison DK. 2004. Unlocking the code of 14‐3‐3. J Cell Sci 117: 1875–1884.

    CAS  PubMed  Google Scholar 

  • Dubois T, Howell S, Amess B, Kerai P, Learmouth M, et al 1997a. Structure and sites of phosphorylation of 14‐3‐3 protein: role in coordinating signal transduction pathways. J Protein Chem 16:513–522.

    CAS  Google Scholar 

  • Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, et al 1997b. 14‐3‐3 is phosphorylated by casein kinase 1 on residue 233. Phosphorylation at this site in vivo regulates Raf/14‐3‐3 interaction. J Biol Chem 272: 28882–28888.

    CAS  Google Scholar 

  • Erickson PF, Moore BW. 1980. Investigation of the axonal transport of three acidic, soluble proteins (14‐3‐2, 14‐3‐3 and S‐100) in the rabbit visual system. J Neurochem 35: 232–241.

    CAS  PubMed  Google Scholar 

  • Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, et al 2000. High frequency of hypermethylation at the 14‐3‐3 θ locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97: 6049–6054.

    CAS  PubMed  Google Scholar 

  • Ferl R. 1996. 14‐3‐3 proteins and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 47: 49–73.

    CAS  PubMed  Google Scholar 

  • Finnie C, Borch J, Collinge DB. 1999. 14‐3‐3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol Biol 40: 545–554.

    CAS  PubMed  Google Scholar 

  • Fu H, Subramanian RR, Masters SC. 2000. 14‐3‐3 proteins: structure, function and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.

    CAS  PubMed  Google Scholar 

  • Furukawa Y, Ikuta N, Omata S, Yamauchi T, Isobe T, et al 1993. Demonstration of the phosphorylation‐dependent interaction of tryptophan hydroxylase with the 14‐3‐3 protein. Biochem Biophys Res Commun 194: 144–149.

    CAS  PubMed  Google Scholar 

  • Giles N, Forrest A, Gabrielli B. 2003. 14‐3‐3 acts as an intramolecular bridge to regulate Cdc25B. Localization and activity. J Biol Chem 278: 28580–28587.

    CAS  PubMed  Google Scholar 

  • Gordon Research Conference, 2004. In February 2004, a Gordon Research Conference on “Biology 14‐3‐3 proteins in the brain” took place in Ventura, CA, USA during 1 week. About 20 speakers gave a lecture about 14‐3‐3 proteins.

    Google Scholar 

  • Grasso A, Roda G, Hogue‐Angeletti RA, Moore BW, Perez VJ. 1977. Preparation and properties of the brain specific protein 14‐3‐2. Brain Res 124: 497–507.

    CAS  PubMed  Google Scholar 

  • Hallberg B. 2002. Exoenzyme S binds its cofactor 14‐3‐3 through a non‐phosphorylated motif. Biochem Soc Trans 30: 401–405.

    CAS  PubMed  Google Scholar 

  • Hayakawa T, Ishiguro H, Toru M, Hamaguchi H, Arinami T. 1998. Systematic search for mutations in the 14‐3‐3 η chain gene on chromosome 22 in schizophrenia. Psychiatr Genet 8: 33–36.

    CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, et al 1997. 14‐3‐3 sigma is a p53‐regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    CAS  PubMed  Google Scholar 

  • Hsu SY, Kaipia A, Zhu L, Hsueh AJ. 1997. Interference of BAD (Bcl‐xL/Bcl‐2‐associated death promoter)‐induced apoptosis in mammalian cells by 14‐3‐3 isoforms and P11. Mol Endocrinol 11: 1858–1867.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, et al 1988. Molecular cloning of cDNA coding for brain‐specific 14‐3‐3 protein, a protein kinase‐dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci USA 85: 7084–7088.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H. 1987. Brain 14‐3‐3 protein is an activator protein that activates tryptophan 5‐monooxygenase and tyrosine 3‐monooxygenase in the presence of Ca2+, calmodulin‐dependent protein kinase II. FEBS Lett 219: 79–82.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Kubota H, Goma T, Mizushima N, Ohsumi Y, et al 2004. Transcriptomic and proteomic analysis of a 14‐3‐3 gene‐deficient yeast. Biochemistry 43: 6149–6158.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Sugano H, Kuwano R, Sunaya T, Okuyama T, et al 1991. Widespread distribution of the 14‐3‐3 protein in vertebrate brains and bovine tissues: correlation with the distributions of calcium‐dependent protein kinases. J Neurochem 56: 1449–1451.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Uchiyama J, Kunihiro O, Ito M, Horigome T, et al 1995. Identification of the site of interaction of the 14‐3‐3 protein with phosphorylated tryptophan hydroxylase. J Biol Chem 270: 28515–28518.

    CAS  PubMed  Google Scholar 

  • Ichimura T, Wakamiya‐Tsuruta A, Itagaki C, Taoka M, Hayano T, et al 2002. Phosphorylation‐dependent interaction of kinesin light chain 2 and the 14‐3‐3 protein. Biochemistry 41: 5566–5572.

    CAS  PubMed  Google Scholar 

  • Ichimura‐Ohshima Y, Morii K, Ichimura T, Araki K, Takahashi Y, et al 1992. cDNA cloning and chromosome assignment of the gene for human brain 14‐3‐3 protein η chain. J Neurosci Res 31: 600–605.

    PubMed  Google Scholar 

  • Isobe T, Ichimura T, Sunaya T, Okuyama T, Takahashi N, et al 1991. Distinct forms of the protein kinase‐dependent activator of tyrosine and tryptophan hydroxylases. J Mol Biol 217: 125–132.

    CAS  PubMed  Google Scholar 

  • Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, et al 1999. Stimulus‐coupled interaction of tyrosine hydroxylase with 14‐3‐3 protein. Biochemistry. 38: 15673–15680.

    CAS  PubMed  Google Scholar 

  • Kawamoto Y, Akiguchi I, Nakamura S, Honjo Y, Shibasaki H, et al 2002. 14‐3‐3 proteins in Lewy bodies in Parkinson's disease and diffuse Lewy body disease brains. J Neuropathol Exp Neurol 61: 245–253.

    CAS  PubMed  Google Scholar 

  • Klein DC, Ganguly S, Coon SL, Shi Q, Gaildrat P, et al 2003. 14‐3‐3 proteins in pineal photoneuroendocrine transduction: how many roles? J Neuroendocrinol 15:370–377.

    CAS  PubMed  Google Scholar 

  • Kovacinn KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, et al 2003. Identification of a proline‐rich Akt substrate as a 14‐3‐3 binding partner. J Biol Chem 278: 10184–10194.

    Google Scholar 

  • Kumagai A, Durphy WG. 1999. Binding of 14‐3‐3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev 13: 1067–1072.

    CAS  PubMed  Google Scholar 

  • Laronga C, Yang HY, Neal C, Lee MH. 2000. Association of the cyclin‐dependent kinases and 14‐3‐3 sigma negatively regulates cell cycle progression. J Biol Chem 275: 23106–23112.

    CAS  PubMed  Google Scholar 

  • Layfield R, Fergusson J, Aitken A, Lowe J, London M, et al 1996. Neurofibrillary tangles of Alzheimer's disease brains contain 14‐3‐3 proteins. Neurosci Lett 209: 57–60.

    CAS  PubMed  Google Scholar 

  • Lias J, Omary MB. 1996. 14‐3‐3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J Cell Biol 133: 345–357.

    Google Scholar 

  • Liu D, Bienkowska I, Petasa C, Collier RJ, Fu H, et al 1995. Crystal structure of the zeta isoform of the 14‐3‐3 protein. Nature 376: 191–194.

    CAS  PubMed  Google Scholar 

  • Liu Y, Yin G, Suprapisichat J, Berk BC, Min W. 2001. Laminar flow inhibits TNF‐induced ASK1 activation by preventing dissociation of ASK1 from its inhibitor 14‐3‐3. J Clin Invest 107: 917–923.

    CAS  PubMed  Google Scholar 

  • Lopez‐Girona A, Furnari B, Mondesert O, Russell. P. 1999. Nuclear localization of Cdc25 is regulated by DNA damage and a 14‐3‐3 protein. Nature 397: 172–175.

    PubMed  Google Scholar 

  • Martin H, Rostas J, Patel Y, Aitken A. 1994. Subcellular localization of 14‐3‐3 isoforms in rat brain using specific antibodies. J Neurochem 63: 2259–2265.

    CAS  PubMed  Google Scholar 

  • McCampbell A, Taylor JP, Tage AA, Robitschek J, Li M, et al 2000. CREB‐binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9: 2197–2202.

    CAS  PubMed  Google Scholar 

  • Megidish T, Corper J, Zhang L, Fu H, Hakomori S. 1998. A novel sphingosine‐dependent protein kinase (SDK 1) specifically phosphorylates certain isoforms of 14‐3‐3 protein. J Biol Chem 273: 21834–21845.

    CAS  PubMed  Google Scholar 

  • Megidish T, White T, Takio K, Titani K, Igarashi Y, et al 1995. The signal modulator protein 14‐3‐3 is a target of sphingosine‐ or N, N‐dimethyl‐sphingosine‐dependent kinase in 3T3(A31) cells. Biochem Biophys Res Commun 216: 739–747.

    CAS  PubMed  Google Scholar 

  • Michaud NR, Fabian JR, Mathes KD, Morrison DK. 1995. 14‐3‐3 is not essential for Raf‐1 function: identification of Raf‐1 proteins that are biologically activated in a 14‐3‐3 and Ras‐independent manner. Mol Cell Biol 15: 3390–3391.

    CAS  PubMed  Google Scholar 

  • Moore BE. 1975. Brain‐specific protein: S‐100 protein, 14‐3‐2 protein, and glial fibrillary protein. Advances in neurochemistry. Agranoff BW, Aprison MH, editors. New York: Plenum Press; pp. 137–155.

    Google Scholar 

  • Moore BE. 1983. Acidic proteins. Handbook of neurochemistry. Lajtha A, editor. Plenum Press; New York: Vol. I, pp. 93–99.

    Google Scholar 

  • Moore BE, Perez VJ. 1968. Specific acidic proteins of the nervous system. Physiological and biochemical aspects of nervous integration. Carlson FD, editor. Englewood Cliffs, New Jersey: Prentice‐Hall; pp. 343–359.

    Google Scholar 

  • Morrison D. 1994. 14‐3‐3: modulators of signaling proteins? Science 266:56–57.

    CAS  PubMed  Google Scholar 

  • Müller J, Ritt DA, Copeland TD, Morrison DK. 2003. Functional analysis of c‐TAK1 substrate binding and identification of PKP2 as a new c‐TAK1 substrate. EMBO J 22: 4431–4442.

    PubMed  Google Scholar 

  • Muratake T, Hayashi S, Ichikawa T, Kumanishi T, Ichimura Y, et al 1996. Structural organization and chromosomal assignment of the human 14‐3‐3 η chain gene (YWHAH). Genomics 36: 63–69.

    CAS  PubMed  Google Scholar 

  • Muratake T, Hayashi S, Ichimura Y, Morii K, Kuwano R, et al 1995. The effect on methamphetamine on the mRNA level for 14‐3‐3 η chain in the human cultured cells. Mol Neurobiol 11: 223–230.

    CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS. 1996. Interaction of 14‐3‐3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.

    CAS  PubMed  Google Scholar 

  • Muslin AJ, Xing H. 2000. 14‐3‐3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12: 703–709.

    CAS  PubMed  Google Scholar 

  • Namikawa K, Su Q, Kiryu‐Seo S, Kiyama H. 1998. Enhanced expression of 14‐3‐3 family members in injured motoneurons. Brain Res Mol Brain Res 55: 315–320.

    CAS  PubMed  Google Scholar 

  • Nestler EG, Hyman SE, Malenka RC. 2001. Molecular neuropharmacology. New York: McGraw‐Hill.

    Google Scholar 

  • O'Kelly I, Butler MH, Zilberborg N, Goldstein SAN. 2002. Forward transport: 14‐3‐3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111: 577–588.

    PubMed  Google Scholar 

  • Paulson HL, Perez MK, Trottior Y, Trojonowski JQ, Subramony SH, et al 1997. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333–344.

    CAS  PubMed  Google Scholar 

  • Pawson T, Scott JD. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–2080.

    CAS  PubMed  Google Scholar 

  • Perego L, Berruti G. 1997. Molecular cloning and tissue‐specific expression of the mouse homologue of the rat brain 14‐3‐3 θ protein: characterization of its cellular and developmental pattern if expression in male germ line. Mol Reprod Dev 47:370–379.

    CAS  PubMed  Google Scholar 

  • Powell DW, Rane MJ, Joughin BA, Kalmukova R, Hong J‐H, et al 2003. Proteomic identification of 14‐3‐3 ζ as a mitogen‐activated protein kinase‐activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol Cell Biol 23: 5376–5387.

    CAS  PubMed  Google Scholar 

  • Pozuelo Rubio M, Geraghty KM, Wong BHC, Wood NT, Campbell DG, et al 2004. 14‐3‐3 affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 379: 395–408.

    PubMed  Google Scholar 

  • Rajan S, Preisig‐ Muller R, Wischmeyer E, Nehring R, Hanley PJ, et al 2002. Interaction with 14‐3‐3 proteins promotes functional expression of potassium channels TASK‐1 and TASK‐3. J Physiol 545: 13–26.

    CAS  PubMed  Google Scholar 

  • Rishi AK, Zhang L, Boyanapolli M, Wali A, Mohammad RM, et al 2003. Identification and characterization of a cell cycle and apoptosis signaling by retinoid CD437. J Biol Chem 278: 33422–33435.

    CAS  PubMed  Google Scholar 

  • Rittingers K, Budman G, Xu J, Volinia S, Cantley LC, et al 1999. Structural analysis of 14‐3‐3 phosphopeptide complexes identifies a dual role for nuclear export signal of 14‐3‐3 in ligand binding. Mol Cell 4: 153–166.

    Google Scholar 

  • Roberts MR. 2000. Regulatory 14‐3‐3 protein–protein interactions in plant cells. Curr Opin Plant Biol 3: 400–405.

    CAS  PubMed  Google Scholar 

  • Rosenquist M, Seinke P, Ferl RJ, Sommarin M, Larsson C. 2000. Evolution of the 14‐3‐3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol 51:446–458.

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor.

    Google Scholar 

  • Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, et al 2000. Involvement of 14‐3‐3 proteins in nuclear localization of telomerase. EMBO J 19: 2652–2661.

    CAS  PubMed  Google Scholar 

  • Simpson RJ. 2003. Proteins and proteomics: a laboratory manual. New York: Cold Spring Harbor.

    Google Scholar 

  • Simpson RJ. 2004. Purifying proteins for proteomics: a laboratory manual. New York: Cold Spring Harbor.

    Google Scholar 

  • Skoulakis EM, Davis RL. 1998. 14‐3‐3 proteins in neuronal development and function. Mol Neurobiol 16: 269–284.

    CAS  PubMed  Google Scholar 

  • Subramanian RR, Zhang H, Wang H, Ichijo H, Miyashita T, et al 2004. Interaction of apoptosis signal‐regulating kinase 1 with isoforms of 14‐3‐3 proteins. Exp Cell Res 294: 581–591.

    CAS  PubMed  Google Scholar 

  • Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, et al 2000. Inactivation of the 14‐3‐3 θ gene is associated with 5′ CpG island hypermethylation in human cancer. Cancer Res 60: 4353–4357.

    CAS  PubMed  Google Scholar 

  • Takahashi Y. 1992. Gene expression in cells of the central nervous system. Prog Neurobiol 38: 523–569.

    CAS  PubMed  Google Scholar 

  • Takahashi Y. 2003. The 14‐3‐3 proteins: gene, gene expression and function. Neurochem Res 28: 1265–1273.

    CAS  PubMed  Google Scholar 

  • Tang SJ, Suen TC, McInnes RR, Buchwald M. 1998. Association of the TLX‐2 homeodomain and 14‐3‐3 eta signaling proteins. J Biol Chem 273: 25356–25363.

    CAS  PubMed  Google Scholar 

  • Thorson JA, Yu LW, Hsu AL, Shih NY, Graves PR, et al 1998. 14‐3‐3 proteins are required for maintenance of Raf‐1 phosphorylation and kinase activity. Mol Cell Biol 18: 5229–5238.

    CAS  PubMed  Google Scholar 

  • Toyooka K, Muratake T, Tanaka T, Igarashi S, Watanabe H, et al 1999. 14‐3‐3 protein η chain gene (YWHAH) polymorphism and its genetic association with schizophrenia. Am J Med Genet 88: 164–167.

    CAS  PubMed  Google Scholar 

  • Toyooka K, Muratake T, Watanabe H, Hayashi S, Ichikawa T, et al 2002. Isolation and structure of the mouse 14‐3‐3 η mRNA in the mouse brain. Mol Brain Res 100: 13–20.

    CAS  PubMed  Google Scholar 

  • Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, et al 2004. JNK promotes Bax translocation to mitochondria through phosphorylation of 14‐3‐3 proteins. EMBO J 23: 1889–1899.

    CAS  PubMed  Google Scholar 

  • Tzivion G, Avruch J. 2002. 14‐3‐3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277: 3061–3064.

    CAS  PubMed  Google Scholar 

  • Ubl A, Berg D, Holzmann C, Krüger R, Berger K, et al 2002. 14‐3‐3 protein is a component of Lewy bodies in Parkinson's disease—mutation analysis and association studies of 14‐3‐3 eta. Mol Brain Res 108: 33–39.

    CAS  PubMed  Google Scholar 

  • Uchida S, Kuma A, Ohtsubo M, Shimura M, Hirata M, et al 2004. Binding of 14‐3‐3 beta but not 14‐3‐3 sigma controls the cytoplasmic localization of CDC25B: binding site preference of 14‐3‐3 subtypes and the subcellular localization of CDC25B. J Cell Sci 117: 3011–3020.

    CAS  PubMed  Google Scholar 

  • Van Der Hoeven PC, Wal Van Der JC, Ruurs P, Van Dijk MC, Van Blitterswijk J. 2000. 14‐3‐3 isotypes facilitate coupling of protein kinase C‐ζ to Raf‐1: negative regulation by 14‐3‐3 phosphorylation. Biochem J 345: 297–306.

    Google Scholar 

  • van Zeijl MJ, Testerink C, Kijne JW, Wang M. 2002. Subcellular differences in post‐translational modification of barley 14‐3‐3 proteins. FEBS Lett 473: 292–296.

    Google Scholar 

  • Vincenz C, Dixit VM. 1996. 14‐3‐3 proteins associate with A20 in an isoform‐specific manner and function both as chaperone and adapter molecules. J Biol Chem 271: 20029–20034.

    CAS  PubMed  Google Scholar 

  • Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, et al 1993a. Developmental regulation of neuronal expression for the η subtype of the 14‐3‐3 protein, a putative regulatory protein for protein kinase C. Dev Brain Res 73: 225–235.

    CAS  Google Scholar 

  • Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, et al 1993b. Molecular cloning of rat cDNAs for β and γ subtypes of 14‐3‐3 protein and developmental changes in expression of their mRNAs in the nervous system. Mol Brain Res 17: 135–146.

    CAS  Google Scholar 

  • Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, et al 1994. Molecular cloning of rat cDNAs for the ξ and θ mRNA in the brain. Mol Brain Res 25: 113–121.

    CAS  PubMed  Google Scholar 

  • Watanabe M, Isobe T, Okuyama T, Ichimura T, Kuwano R, et al 1991. Molecular cloning of cDNA to rat 14‐3‐3 η chain polypeptide and the neuronal expression of the mRNA in the central nervous system. Mol Brain Res 10: 151–158.

    CAS  PubMed  Google Scholar 

  • Weiner H, Kaiser WM. 1999. 14‐3‐3 proteins control proteolysis of nitrate reductase in spinach leaves. FEBS Lett 455: 75–78.

    CAS  PubMed  Google Scholar 

  • Woods YL, Rena G. 2002. Effect of multiple phosphorylation events on the transcription factors FKHR, FKHDL1 and AFX. Biochem Soc Trans 30: 391–397.

    CAS  PubMed  Google Scholar 

  • Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, et al 1995. Structure of a 14‐3‐3 protein and implications for coordination of multiple signaling pathways. Nature 376: 188–191.

    CAS  PubMed  Google Scholar 

  • Xu J, Kao S‐Y, Lee FJS, Song W, Jin L‐W, et al 2002. Dopamine‐dependent neurotoxicity of α‐synuclein: a mechanism for selective neurodegeneration in Parkinson's disease. Nature Med 8:600–606.

    CAS  PubMed  Google Scholar 

  • Yaffe MB. 2004. Master of all things phosphorylated. Biochem J 379 (Pt 2): e1–e2.

    CAS  PubMed  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, et al 1997. The structural basis for 14‐3‐3: phosphopeptide binding specificity. Cell 91: 961–971.

    CAS  PubMed  Google Scholar 

  • Zah MB, Harada H, Yang E, Juckel J, Korsmeyer SJ. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14‐3‐3 not BCL‐X(L). Cell 87: 619–628.

    Google Scholar 

  • Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, et al 1998. Detection of 14‐3‐3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt‐Jakob disease. Ann Neurol 43: 32–40.

    CAS  PubMed  Google Scholar 

  • Zhang L, Chen J, Fu H. 1999. Suppression of apoptosis signal‐regulating kinase 1‐induced cell death by 14‐3‐3 proteins. Proc Natl Acad Sci USA 96: 8511–8515.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Reddy S, Murrey H, Fei H, Levitan IB. 2003. Monomeric 14‐3‐3 protein is sufficient to modulate the activity of the Drosophila slowpoke calcium‐dependent potassium channel. J Biol Chem 278: 10073–10080.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author heartily thanks Prof. George Hauser (Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02378, USA) for his kind reading and correction of the manuscript. Table 12-2 was used with the permission of Dr. D. Berg. The author heartily thanks Dr. D. Berg (Institute for Medical Genetics, University of Tübingen, Tübingen, Germany). Figure 4 was used under the permission of Nature Editorial Office. The author heartily thanks Nature Editorial Office. The author heartily thanks Dr. K. Washiyama (Department of Molecular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan) for his kind support during the writing of this review.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Takahashi, Y. (2006). 14-3-3 Proteins in Brain function. In: Lajtha, A., Lim, R. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30381-9_12

Download citation

Publish with us

Policies and ethics