Skip to main content

Functional Imaging of P-glycoprotein in the Blood–Brain Barrier with PET: State of the Art

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The blood–brain barrier (BBB) is the main barrier between blood and brain. Its purpose is to maintain homeostasis in and protection of the central nervous system. Therefore, under normal physiological conditions, the BBB is impermeable for endotoxins, but also for exotoxins like drugs.

In the endothelial cells of the BBB, different active influx, but also active drug efflux transporters are presents. An example of drug efflux pumps is P‐glycoprotein (P‐gp) drug efflux pumps, which are encoded by MDR1 genes in humans.

A different P‐gp expression in the blood‐brain barrier can play a role in the aetiology of several brain disorders. For this reason, there is a need to develop an assay for the quantification P‐gp functionality in the BBB.

We discuss, the relationship of P‐gp and brain pathology and the involvement of age in loss of P‐gp function.

Furthermore, drugs treatment of brain diseases like Alzheimers's disease and Parkinson's disease are often not effective. Therefore, we discuss the relationship between P‐gp and drug availability.

In this chapter, an overview is given in the use of positron emission tomography as a tool for measuring P‐gp function in the area of neurology, neurophysiology and pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

beta‐amyloid

AD:

alzheimer's disease

ATP:

adenosine triphospate

BBB:

blood–brain barrier

CNS:

central nervous system

CsA:

cyclosporine A

4V:

fourth ventricle

LV:

lateral ventricle

MRI:

magnetic resonance image

MRP:

multidrug resistance-associated protein

NC:

nasal cavity

PET:

positron emission tomography

PD:

parkinson's disease

P‐gp:

P‐glycoprotein

PIT:

pituitary

SUV:

standard uptake value

V d :

volume of distribution

WT:

wild-type

References

  • Anderson H, Price P. 2000. What does positron emission tomography offer oncology? Eur J Cancer 36: 2028–2035.

    Article  CAS  PubMed  Google Scholar 

  • Bain LJ, Le Blanc GA. 1996. Interaction of structurally diverse pesticides with the human MDR1 gene product P-glycoprotein. Toxicol Appl Pharmacol 141: 288–298.

    CAS  PubMed  Google Scholar 

  • Bart J. 2003. [11C]verapamil PET reveals modulation of P-gp in the BBB by calcineurin blockers in lung transplant recipients. Thesis 2003.

    Google Scholar 

  • Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, et al. 2005. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115: 3285–3290.

    Article  CAS  PubMed  Google Scholar 

  • Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, et al. 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86: 695–698.

    Article  CAS  PubMed  Google Scholar 

  • Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, et al. 2005. Parkinson's disease: From causes to mechanisms. C R Biol 328: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • de Lange EC, Danhof M. 2002. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: Implications of the barriers between blood and brain. Clin Pharmacokin 41: 691–703.

    Article  CAS  Google Scholar 

  • Di Monte DA. 2003. The environment and Parkinson's disease: Is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Drozdzik M, Bialecka M, Mysliwiec K, Honczarenko K, Stankiewicz J, et al. 2003. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: A possible link between environmental and genetic factors in Parkinson's disease. Pharmacogenetics 13: 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Ejsing TB, Linnet K. 2005. Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood-brain barrier. Hum Psychopharmacol 20: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Eytan GD, Kuchel PW. 1999. Mechanism of action of P-glycoprotein in relation to passive membrane permeation. Int Rev Cytol 190: 175–250.

    Article  CAS  PubMed  Google Scholar 

  • Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, et al. 2002. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110: 1309–1318.

    CAS  PubMed  Google Scholar 

  • Furuno T, Landi MT, Ceroni M, Caporaso N, Bernucci I, et al. 2002. Expression polymorphism of the blood-brain barrier component P-glycoprotein (MDR1) in relation to Parkinson's disease. Pharmacogenetics 12: 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, et al. 2001. Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev 36: 258–264.

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ. 2002. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 297: 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, et al. 2005. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57: 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, et al. 2001. Beta-amyloid efflux mediated by P-glycoprotein. J Neurochem 76: 1121–1128.

    Article  CAS  PubMed  Google Scholar 

  • Lammertsma AA. 2004. Role of human and animal PET studies in drug development. Int Cong Ser 1265: 3–11.

    Article  CAS  Google Scholar 

  • Langston JW. 2002. Parkinson's disease: Current and future challenges. Neurotoxicology 23: 443–450.

    Article  PubMed  Google Scholar 

  • Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, et al. 2005. In vivo evaluation of P-glycoprotein function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther 316(2): 647–653.

    Google Scholar 

  • Lewis P, Griffin S, Marsden P, Gee T, Nunan T, et al. 1994. Whole-body 18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer. Lancet 344: 1265–1266.

    Article  CAS  PubMed  Google Scholar 

  • Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet JR, et al. 2005. Development of a tracer kinetic model for the analysis of (R)-[11C]verapamil PET data. J Cereb Blood Flow Metab 25: S608.

    Article  Google Scholar 

  • Luurtsema G, Molthoff CFM, Windhorst AD, Smit JW, Keizer H, et al. 2003. (R)- and (S)-[C-11]verapamil as PET-tracers for measuring P-glycoprotein function: In vitro and in vivo evaluation. Nucl Med Biol 30: 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Marchi N, Hallene KL, Kight KM, Cucullo L, Moddel G, et al. 2004. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Med 2: 37.

    Article  PubMed  Google Scholar 

  • Mattson MP. 2004. Pathways towards and away from Alzheimer's disease. Nature 430: 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM. 1998. CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70: 1781–1792.

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Rice A, Michaelis ML, Georg G, Liu Y, Turunen B, et al. 2003. Overcoming the blood-brain barrier to taxane delivery for neurodegenerative diseases and brain tumors. J Mol Neurosci 20: 339–343.

    Article  CAS  PubMed  Google Scholar 

  • Roberts RL, Joyce PR, Mulder RT, Begg EJ, Kennedy MA. 2002. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J 2: 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, et al. 2005. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 77: 503–514.

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH. 1999. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36: 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, et al. 1994. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77: 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA, van Deemter L. 1996. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97: 2517–2524.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ. 1999. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399: A23–A31.

    Article  CAS  PubMed  Google Scholar 

  • Taylor EM. 2002. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 41: 81–92.

    Article  CAS  PubMed  Google Scholar 

  • Toornvliet JR, van Berckel BNM, Luurtsema G, Lubberink M, Geldof AA, et al. 2006. Effect of age on functional P-glycoprotein in the blood brain barrier measured using (R)-[11C]verapamil and positron emission tomography. Clin Pharmacol Ther 79: 540–548.

    Google Scholar 

  • Tsuji A, Tamai II. 1999. Carrier-mediated or specialized transport of drugs across the blood-brain barrier. Adv Drug Deliv Rev 36: 277–290.

    Article  CAS  PubMed  Google Scholar 

  • Uhr M, Holsboer F, Muller MB. 2002. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14: 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, et al. 2002. Deposition of Alzheimer's beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12: 535–541.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Hendrikse, N.H., Luurtsema, G., van Berckel, B.N.M., Franssen, E.J.F., Lammertsma, A.A. (2007). Functional Imaging of P-glycoprotein in the Blood–Brain Barrier with PET: State of the Art. In: Lajtha, A., Reith, M.E.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30380-2_5

Download citation

Publish with us

Policies and ethics