Skip to main content

Neuronal Membrane Lipids – Their Role in the Synaptic Vesicle Cycle

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The synaptic vesicle cycle requires a stringent interplay between many entities, traversing through temporal and spatial coordination in order to ensure successful and sustainable neurotransmission. Adding to this complexity of coordination, the complete cycle of neuronal synapse is rapid, estimated at ∼1 min. As early as the 1960s, various studies have taken on the task to characterize the compositions of synaptic vesicles, identifying both lipids and proteins. Clearly, even till now, there have been extensive debates over how the synaptic vesicle (SV) cycle occurs, which led to various imaginable models, loosely divided into clathrin-dependent and -independent pathways. There have also been many lines of evidence to support the existence and relevance of each model, continuously adding to the wealth of knowledge in identifying the roles of various proteins in the SV cycle. However, less is known about the roles of lipids. While the most and best studied lipids are glycerophospholipids, in particular phosphorylated forms of glycerophosphatidylinositol, the phosphoinositides, we still do not know if and how other lipids, such as cholesterol and sphingolipids, regulate the SV cycle. This chapter will therefore focus on our current understanding of lipid involvement in the SV cycle. We will review the main classes of lipids found in SV membranes and discuss their functions in the context of the SV cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arachidonic acid

ACh:

acetyl-choline

Cer:

ceramide

Chol:

cholesterol

DAG:

diacylglycerol

DHA:

docosahexaenoic acid

Ins(1,4,5):

inositol (1,4,5) triphosphate

LPC:

lysophosphatidylcholine

NAE:

N-acylethanolamine

NAPE:

N-acylphosphatidylethanolamine

NPC:

niemann-pick disease type C

PA:

phosphatic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PI(4,5)P2:

phosphatidylinositol-4,5-bisphosphate PI(4,5)P2

PIs:

phosphoinositides

PLD:

phospholipase

pPC:

plasmenylcholine

pPE:

plasmenylethanolamine

PS:

phosphatidylserine

SM:

sphingomyelin

SMase:

sphingomyelinase

SV:

synaptic vesicle

References

  • Amenta F, Tayebati SK. 2008. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem 15: 488–498.

    PubMed  Google Scholar 

  • Andre A, Juaneda P, Sebedio JL, Chardigny JM. 2006. Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88: 103–111.

    PubMed  Google Scholar 

  • Berman DE, Dall’armi C, Voronov SV, McIntire LB, Zhang H, et al. 2008. Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci 11: 547–554.

    PubMed  Google Scholar 

  • Berridge MJ. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360.

    PubMed  Google Scholar 

  • Breckenridge WC, Gombos G, Morgan IG. 1972. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266: 695–707.

    PubMed  Google Scholar 

  • Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G. 1973. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim Biophys Acta 320: 681–686.

    PubMed  Google Scholar 

  • Brodin L, Low P, Shupliakov O. 2000. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr Opin Neurobiol 10: 312–320.

    PubMed  Google Scholar 

  • Buccoliero R, Futerman AH. 2003. The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol Res 47: 409–419.

    PubMed  Google Scholar 

  • Carrer DC, Hartel S, Monaco HL, Maggio B. 2003. Ceramide modulates the lipid membrane organization at molecular and supramolecular levels. Chem Phys Lipids 122: 147–152.

    PubMed  Google Scholar 

  • Chen X, Morris R, Lawrence MJ, Quinn PJ. 2007. The isolation and structure of membrane lipid rafts from rat brain. Biochimie 89: 192–196.

    PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM. 2003. Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72: 175–207.

    PubMed  Google Scholar 

  • Chernomordik LV, Zimmerberg J, Kozlov MM. 2006. Membranes of the world unite! J Cell Biol 175: 201–207.

    PubMed  Google Scholar 

  • Costa LG. 1994. Signal transduction mechanisms in developmental neurotoxicity: the phosphoinositide pathway. Neurotoxicology 15: 19–27.

    PubMed  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, et al. 1999. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99: 179–188.

    PubMed  Google Scholar 

  • Deutsch JW, Kelly RB. 1981. Lipids of synaptic vesicles: Relevance to the mechanism of membrane fusion. Biochemistry 20: 378–385.

    PubMed  Google Scholar 

  • DeVries GH, Zetusky WJ, Zmachinski C, Calabrese VP. 1981. Lipid composition of axolemma-enriched fractions from human brains. J Lipid Res 22: 208–216.

    PubMed  Google Scholar 

  • Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443: 651–657.

    PubMed  Google Scholar 

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, et al. 2004. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431: 415–422.

    PubMed  Google Scholar 

  • Eckhardt M, Hedayati KK, Pitsch J, Lullmann-Rauch R, Beck H, et al. 2007. Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27: 9009–9021.

    PubMed  Google Scholar 

  • Fanani ML, Hartel S, Oliveira RG, Maggio B. 2002. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J 83: 3416–3424.

    PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA. 2001. Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7: 232–245.

    PubMed  Google Scholar 

  • Fedorow H, Pickford R, Kettle E, Cartwright M, Halliday GM, et al. 2006. Investigation of the lipid component of neuromelanin. J Neural Transm113(6): 735–739.

    PubMed  Google Scholar 

  • Fernandis AZ, Wenk MR. 2007. Membrane lipids as signaling molecules. Curr Opin Lipidol 18: 121–128.

    PubMed  Google Scholar 

  • Freund TF, Katona I, Piomelli D. 2003. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83: 1017–1066.

    PubMed  Google Scholar 

  • Futerman AH, Riezman H. 2005. The ins and outs of sphingolipid synthesis. Trends Cell Biol 15: 312–318.

    PubMed  Google Scholar 

  • Glaser PE, Gross RW. 1995. Rapid plasmenylethanolamine-selective fusion of membrane bilayers catalyzed by an isoform of glyceraldehyde-3-phosphate dehydrogenase: discrimination between glycolytic and fusogenic roles of individual isoforms. Biochemistry 34: 12193–12203.

    PubMed  Google Scholar 

  • Glomset JA. 2006. Role of docosahexaenoic acid in neuronal plasma membranes. Sci STKE 321: 6.

    Google Scholar 

  • Goritz C, Mauch DH, Pfrieger FW. 2005. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29: 190–201.

    PubMed  Google Scholar 

  • Goritz C, Mauch DH, Nagler K, Pfrieger FW. 2002. Role of glia-derived cholesterol in synaptogenesis: New revelations in the synapse-glia affair. J Physiol Paris 96: 257–263.

    PubMed  Google Scholar 

  • Goto K, Kondo H. 1999. Diacylglycerol kinase in the central nervous system – molecular heterogeneity and gene expression. Chem Phys Lipids 98: 109–117.

    PubMed  Google Scholar 

  • Guo M, Stockert L, Akbar M, Kim HY. 2007. Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J Mol Neurosci 33: 67–73.

    PubMed  Google Scholar 

  • Gylys KH, Fein JA, Yang F, Miller CA, Cole GM. 2007. Increased cholesterol in Abeta-positive nerve terminals from Alzheimer’s disease cortex. Neurobiol Aging 28: 8–17.

    PubMed  Google Scholar 

  • Han X. 2004. The role of apolipoprotein E in lipid metabolism in the central nervous system. Cell Mol Life Sci 61: 1896–1906.

    PubMed  Google Scholar 

  • Han X. 2005. Lipid alterations in the earliest clinically recognizable stage of Alzheimer’s disease: implication of the role of lipids in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2: 65–77.

    PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC. 2002. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. J Neurochem 82: 809–818.

    PubMed  Google Scholar 

  • Hansen HS, Lauritzen L, Moesgaard B, Strand AM, Hansen HH. 1998. Formation of N-acyl-phosphatidylethanolamines and N-acetylethanolamines: proposed role in neurotoxicity. Biochem Pharmacol 55: 719–725.

    PubMed  Google Scholar 

  • Haque ME, McIntosh TJ, Lentz BR. 2001. Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: “nature’s own” fusogenic lipid bilayer. Biochemistry 40: 4340–4348.

    PubMed  Google Scholar 

  • Huang CC, Lo SW, Hsu KS. 2001. Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J Physiol 532: 731–748.

    PubMed  Google Scholar 

  • Jin XH, Okamoto Y, Morishita J, Tsuboi K, Tonai T, et al. 2007. Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J Biol Chem 282: 3614–3623.

    PubMed  Google Scholar 

  • Jones AJ, Rumsby MG. 1977. Localization of sites for ionic interaction with lipid in the C-terminal third of the bovine myelin basic protein. Biochem J 167: 583–591.

    PubMed  Google Scholar 

  • Kanter JL, Narayana S, Ho PP, Catz I, Warren KG, Sobel RA, Steinman L, Robinson WH. 2006. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12: 138–143.

    PubMed  Google Scholar 

  • Karten B, Campenot RB, Vance DE, Vance JE. 2006. The Niemann-Pick C1 protein in recycling endosomes of presynaptic nerve terminals. J Lipid Res 47: 504–514.

    PubMed  Google Scholar 

  • Kenworthy AK, Nichols BJ, Remmert CL, Hendrix GM, Kumar M, et al. 2004. Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol 165: 735–746.

    PubMed  Google Scholar 

  • Kim HY. 2007. Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282: 18661–18665.

    PubMed  Google Scholar 

  • Kim HY, Bigelow J, Kevala JH. 2004. Substrate preference in phosphatidylserine biosynthesis for docosahexaenoic acid containing species. Biochemistry 43: 1030–1036.

    PubMed  Google Scholar 

  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, et al. 2003. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 162: 113–124.

    PubMed  Google Scholar 

  • Kuypers FA. 1998. Phospholipid asymmetry in health and disease. Curr Opin Hematol 5: 122–131.

    PubMed  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P. 2004. Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc Natl Acad Sci USA 101: 546–551.

    PubMed  Google Scholar 

  • Lesa GM, Palfreyman M, Hall DH, Clandinin MT, Rudolph C, et al. 2003. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116: 4965–4975.

    PubMed  Google Scholar 

  • Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, et al. 2006. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3: 321–331.

    PubMed  Google Scholar 

  • Li Z, Agellon LB, Vance DE. 2005. Phosphatidylcholine homeostasis and liver failure. J Biol Chem 280: 37798–37802.

    PubMed  Google Scholar 

  • Li Z, Vance DE. 2008. Thematic review series: glycerolipids. Phosphatidylcholine and choline homeostasis. J Lipid Res 49: 1187–1194.

    PubMed  Google Scholar 

  • Lohner K. 1996. Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids 81: 167–184.

    PubMed  Google Scholar 

  • Marchesini N, Osta W, Bielawski J, Luberto C, Obeid LM, et al. 2004. Role for mammalian neutral sphingomyelinase 2 in confluence-induced growth arrest of MCF7 cells. J Biol Chem 279: 25101–25111.

    PubMed  Google Scholar 

  • Martinez M, Mougan I. 1998. Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71: 2528–2533.

    PubMed  Google Scholar 

  • Matsuura D, Taguchi K, Yagisawa H, Maekawa S. 2007. Lipid components in the detergent-resistant membrane microdomain (DRM) obtained from the synaptic plasma membrane of rat brain. Neurosci Lett 423: 158–161.

    PubMed  Google Scholar 

  • Mattjus P, Malewicz B, Valiyaveettil JT, Baumann WJ, Bittman R, et al. 2002. Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes. J Biol Chem 277: 19476–19481.

    PubMed  Google Scholar 

  • McLaughlin S, Aderem A. 1995. The myristoyl-electrostatic switch: A modulator of reversible protein-membrane interactions. Trends Biochem Sci 20: 272–276.

    PubMed  Google Scholar 

  • Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, et al. 2004. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24: 53–62.

    PubMed  Google Scholar 

  • Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC. 2007. Sphingolipids and cell death. Apoptosis12: 923–939.

    PubMed  Google Scholar 

  • Mozzi R, Buratta S, Goracci G. 2003. Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem Res 28: 195–214.

    PubMed  Google Scholar 

  • Michaelson DM, Barkai G, Barenholz Y. 1983. Asymmetry of lipid organization in cholinergic synaptic vesicle membranes. Biochem J 211: 155–162.

    PubMed  Google Scholar 

  • Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E. 2005. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25: 2557–2565.

    PubMed  Google Scholar 

  • Munro S. 2003. Lipid rafts: Elusive or illusive? Cell 115: 377–388.

    PubMed  Google Scholar 

  • Murray D, Ben-Tal N, Honig B, McLaughlin S. 1997. Electrostatic interaction of myristoylated proteins with membranes: Simple physics, complicated biology. Structure 5: 985–989.

    PubMed  Google Scholar 

  • Murray D, McLaughlin S, Honig B. 2001. The role of electrostatic interactions in the regulation of the membrane association of G protein beta gamma heterodimers. J Biol Chem 276: 45153–45159.

    PubMed  Google Scholar 

  • Nagan N, Zoeller RA. 2001. Plasmalogens: Biosynthesis and functions. Prog Lipid Res 40: 199–229.

    PubMed  Google Scholar 

  • Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, et al. 2007. Role of activation of PIP5Kgamma661 by AP-2 complex in synaptic vesicle endocytosis. Embo J 26: 1105–1116.

    PubMed  Google Scholar 

  • Nemni R, Gerosa E, Piccolo G, Merlini G. 1994. Neuropathies associated with monoclonal gammapathies. Haematologica 79: 557–566.

    PubMed  Google Scholar 

  • Ochoa WF, Corbalan-Garcia S, Eritja R, Rodriguez-Alfaro JA, Gomez-Fernandez JC, et al. 2002. Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase calpha. J Mol Biol 320: 277–291.

    PubMed  Google Scholar 

  • Okamoto Y, Wang J, Morishita J, Ueda N. 2007. Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers 4: 1842–1857.

    PubMed  Google Scholar 

  • Pacheco MA, Jope RS. 1996. Phosphoinositide signaling in human brain. Prog Neurobiol 50: 255–273.

    PubMed  Google Scholar 

  • Pellkofer R, Sandhoff K. 1980. Halothane increases membrane fluidity and stimulates sphingomyelin degradation by membrane-bound neutral sphingomyelinase of synaptosomal plasma membranes from calf brain already at clinical concentrations. J Neurochem 34: 988–992.

    PubMed  Google Scholar 

  • Pfrieger FW. 2003a. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60: 1158–1171.

    PubMed  Google Scholar 

  • Pfrieger FW. 2003b. Role of cholesterol in synapse formation and function. Biochim Biophys Acta 1610: 271–280.

    PubMed  Google Scholar 

  • Piomelli D, Astarita G, Rapaka R. 2007. A neuroscientist’s guide to lipidomics. Nat Rev Neurosci 8: 743–754.

    PubMed  Google Scholar 

  • Puglielli L, Tanzi RE, Kovacs DM. 2003. Alzheimer’s disease: The cholesterol connection. Nat Neurosci 6: 345–351.

    PubMed  Google Scholar 

  • Purdon AD, Rosenberger TA, Shetty HU, Rapoport SI. 2002. Energy consumption by phospholipid metabolism in mammalian brain. Neurochem Res 27: 1641–1647.

    PubMed  Google Scholar 

  • Rana RS, Hokin LE. 1990. Role of phosphoinositides in transmembrane signaling. Physiol Rev 70: 115–164.

    PubMed  Google Scholar 

  • Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, et al. 2002. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108: 121–133.

    PubMed  Google Scholar 

  • Ribeiro I, Marcao A, Amaral O, Sa Miranda MC, Vanier MT, et al. 2001. Niemann-Pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet 109: 24–32.

    PubMed  Google Scholar 

  • Rogasevskaia T, Coorssen JR. 2006. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci 119: 2688–2694.

    PubMed  Google Scholar 

  • Rohrbough J, Broadie K. 2005. Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6: 139–150.

    PubMed  Google Scholar 

  • Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, et al. 2004. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 24: 7789–7803.

    PubMed  Google Scholar 

  • Sagin FG, Sozmen EY. 2008. Lipids as key players in Alzheimer disease: Alterations in metabolism and genetics. Curr Alzheimer Res 5: 4–14.

    PubMed  Google Scholar 

  • Salem N Jr, Litman B, Kim HY, Gawrisch K. 2001. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36: 945–959.

    PubMed  Google Scholar 

  • Sandhoff K, Pallmann B. 1978. Membrane-bound neuraminidase from calf brain: Regulation of oligosialoganglioside degradation by membrane fluidity and membrane components. Proc Natl Acad Sci USA 75: 122–126.

    PubMed  Google Scholar 

  • Shahin V, Datta D, Hui E, Henderson RM, Chapman ER, et al. 2008. Synaptotagmin perturbs the structure of phospholipid bilayers. Biochemistry 47: 2143–2152.

    PubMed  Google Scholar 

  • Shapiro MS, Wollmuth LP, Hille B. 1994. Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N-ethylmaleimide in rat sympathetic neurons. J Neurosci 14: 7109–7116.

    PubMed  Google Scholar 

  • Simons M, Trotter J. 2007. Wrapping it up: The cell biology of myelination. Curr Opin Neurobiol 17: 533–540.

    PubMed  Google Scholar 

  • Snook CF, Jones JA, Hannun YA. 2006. Sphingolipid-binding proteins. Biochim Biophys Acta 1761: 927–946.

    PubMed  Google Scholar 

  • Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J. 2005. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102: 4554–4559.

    PubMed  Google Scholar 

  • Strokin M, Sergeeva M, Reiser G. 2007. Prostaglandin synthesis in rat brain astrocytes is under the control of the n-3 docosahexaenoic acid, released by group VIB calcium-independent phospholipase A2. J Neurochem 102: 1771–1782.

    PubMed  Google Scholar 

  • Svennerholm L. 1968. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9: 570–579.

    PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127: 831–846.

    PubMed  Google Scholar 

  • Tani M, Ito M, Igarashi Y. 2007. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell Signal 19: 229–237.

    PubMed  Google Scholar 

  • Usuki S, Hamanoue M, Kohsaka S, Inokuchi J. 1996. Induction of ganglioside biosynthesis and neurite outgrowth of primary cultured neurons by L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol. J Neurochem 67: 1821–1830.

    PubMed  Google Scholar 

  • van Echten-Deckert G, Herget T. 2006. Sphingolipid metabolism in neural cells. Biochim Biophys Acta 1758: 1978–1994.

    PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9: 112–124.

    PubMed  Google Scholar 

  • Vance DE, Li Z, Jacobs RL. 2007. Hepatic phosphatidylethanolamine N-methyltransferase, unexpected roles in animal biochemistry and physiology. J Biol Chem 282: 33237–33241.

    PubMed  Google Scholar 

  • Vance JE, Karten B, Hayashi H. 2006. Lipid dynamics in neurons. Biochem Soc Trans 34: 399–403.

    PubMed  Google Scholar 

  • Voelker DR. 1988. Phosphatidylserine translocation in animal cells. Prog Clin Biol Res 282: 153–164.

    PubMed  Google Scholar 

  • Wasser CR, Ertunc M, Liu X, Kavalali ET. 2007. Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling. J Physiol 579: 413–429.

    PubMed  Google Scholar 

  • Wenk MR, De Camilli P. 2004. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: Insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci USA 101: 8262–8269.

    PubMed  Google Scholar 

  • Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, et al. 2001. PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32: 79–88.

    PubMed  Google Scholar 

  • Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C, et al. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J Biol Chem 276: 33540–33546.

    PubMed  Google Scholar 

  • Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, et al. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319: 210–213.

    PubMed  Google Scholar 

  • Zamir O, Charlton MP. 2006. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 571: 83–99.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lim, L., Wenk, M.R. (2009). Neuronal Membrane Lipids – Their Role in the Synaptic Vesicle Cycle. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_9

Download citation

Publish with us

Policies and ethics