Skip to main content

Cubing the Brain: Mapping Expression Patterns Genome-Wide

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 782 Accesses

Abstract:

Technologies for 3D genome-wide mapping of expression patterns will be increasingly important to understand the brain in health and disease. Here, we describe the use of voxelation to reach these goals. The brain is divided into spatially registered cubes which are subjected to high-throughput expression analysis using methods such as microarrays or real-time PCR. The data can then be used to reconstruct expression images reminiscent of those obtained from biomedical imaging systems. We discuss the insights obtained from voxelation of the mouse brain at a volumetric resolution of 11 μl and 1 μl and the human brain at 1 cm3 and 87 μl. The human and mouse studies also incorporated Alzheimer's and Parkinson's disease specimens, giving a better understanding of the molecular pathology of these disorders. Furthermore, we describe useful analytic approaches to understanding the large datasets resulting from voxelation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Drd2:

dopamine D2 receptor

Nfl:

neurofilament light chain

qRT-PCR:

quantitative real time-PCR

SVD:

singular value decomposition

References

  • Barlow JZ, Huntley GW. 2000. Developmentally regulated expression of thy-1 in structures of the mouse sensory-motor system. J Comp Neurol 421(2): 215–233.

    Article  CAS  PubMed  Google Scholar 

  • Boguski MS, Jones AR. 2004. Neurogenomics: At the intersection of neurobiology and genome sciences. Nat Neurosci 7(5): 429-433. Website available at: http://www.brainatlas.org/.

    Google Scholar 

  • Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, et al. 1997. Laser capture microdissection: Molecular analysis of tissue. Science 278(5342): 1481, 1483.

    Article  CAS  PubMed  Google Scholar 

  • Brown VM, Ossadtchi A, Khan AH, Yee S, Lacan G, et al. 2002. Multiplex three-dimensional brain gene expression mapping in a mouse model of parkinson’s disease. Genome Res 12(6): 868–884.

    CAS  PubMed  Google Scholar 

  • Bunney WE, Bunney BG, Vawter MP, Tomita H, Li J, et al. 2003. Microarray technology: A review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am J Psychiatry 160(4): 657–666.

    Article  PubMed  Google Scholar 

  • Gambhir SS, Barrio JR, Herschman HR, Phelps ME. 1999. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26(5): 481–490.

    Article  CAS  PubMed  Google Scholar 

  • GongS, Zheng C, Doughty ML, Losos K, Didkovsky N, et al. 2003. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961): 917–925.

    Article  CAS  PubMed  Google Scholar 

  • Heintz N. 2001. Bac to the future: The use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2(12): 861–870.

    Article  CAS  PubMed  Google Scholar 

  • Hendler RW, Shrager RI. 1994. Deconvolutions based on singular value decomposition and the pseudoinverse: A guide for beginners. J Biochem Biophys Methods 28(1): 1–33.

    Article  CAS  PubMed  Google Scholar 

  • Herschman HR, MacLaren DC, Iyer M, Namavari M, Bobinski K, et al. 2000. Seeing is believing: Non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 59(6): 699–705.

    Article  CAS  PubMed  Google Scholar 

  • Loring JF. 2005. Evolution of microarray analysis. Neurobiol Aging 27(8):1084–1086.

    Article  PubMed  Google Scholar 

  • Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, et al. 2000. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18(3): 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Min N, Joh TH, Kim KS, Peng C, Son JH. 1994. 5′ upstream DNA sequence of the rat tyrosine hydroxylase gene directs high-level and tissue-specific expression to catecholaminergic neurons in the central nervous system of transgenic mice. Brain Res Mol Brain Res 27(2): 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. 1998. Dopamine receptors: From structure to function. Physiol Rev 78(1): 189–225.

    CAS  PubMed  Google Scholar 

  • Owen MJ, Cardno AG, O’Donovan MC. 2000. Psychiatric genetics: Back to the future. Mol Psychiatry 5(1): 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME. 1998. Behind the scenes of functional brain imaging: A historical and physiological perspective. Proc Natl Acad Sci USA 95(3): 765–772.

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Brown VM, Chaudhari A, Khan AH, et al. 2003. High-resolution voxelation mapping of human and rodent brain gene expression. J Neurosci Methods 125(1–2): 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Stork O, Hashimoto T, Obata K. 1994. Haloperidol activates tyrosine hydroxylase gene-expression in the rat substantia nigra, pars reticulata. Brain Res 633(1–2): 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Yaworsky PJ, Gardner DP, Kappen C. 1997. Transgenic analyses reveal developmentally regulated neuron- and muscle-specific elements in the murine neurofilament light chain gene promoter. J Biol Chem 272(40): 25112–25120.

    Article  CAS  PubMed  Google Scholar 

  • Zacharias DA, Baird GS, Tsien RY. 2000. Recent advances in technology for measuring and manipulating cell signals. Curr Opin Neurobiol 10(3): 416–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Chin, M.H., Smith, D.J. (2009). Cubing the Brain: Mapping Expression Patterns Genome-Wide. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_29

Download citation

Publish with us

Policies and ethics