Skip to main content

Clinical Considerations in Translational Research with Chronic Spinal Cord Injury: Intervention Readiness and Intervention Impact

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Despite the extensive efforts to identify interventions that can be successfully translated to promote functional recovery after chronic spinal cord injury (SCI), investigators have neglected the viability of interventions given the cumulative physiologic decline resulting from the SCI. Two concepts are introduced including intervention readiness and intervention impact. The former concept refers to the accumulation of secondary conditions and health decline over time after SCI and the extent to which these factors may be evaluated to determine whether a given intervention is feasible. The latter concept refers to the actual impact of an intervention on all outcomes, including overall health, participation, and quality of life. We have highlighted an existing body of literature on physiologic decline after SCI (e.g., loss in bone density and muscle mass), as well as research on individuals with chronic, ambulatory, incomplete SCI that identifies heightened risk of secondary conditions associated with incomplete ambulation. Individuals with incomplete ambulatory SCI represent a type of natural experiment that can be used to glimpse the future of SCI and help us prepare for the increasing portion of individuals with incomplete injuries. We must balance our zeal for identification of interventions to restore function with research that helps us to realistically appraise the extent to which those with chronic SCI are likely to be ready for and benefit from such interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMD:

bone mineral density

BWSTT:

body weight supported treadmill training

CAD:

coronary artery disease

CSAs:

cross sectional areas

CVD:

cardiovascular disease

DEXA:

dual energy X-ray absorptiometry

FES:

functional electrical stimulation

IMF:

intramuscular fat

RGO-II:

reciprocal gait orthosis II

SCI:

spinal cord injury

SCI-FAI:

spinal cord injury functional ambulation inventory

WISCI:

walking index for spinal cord injury

References

  • Adams J, White M. 2004. Biological ageing. A fundamental, biological link between socioeconomic status and health? Eur J Pub Health 14: 331–334.

    Google Scholar 

  • Baldi JC, Jackson RD, Moraille R, Mysiw WJ. 1998. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord 36(Suppl 7): 463–469.

    CAS  PubMed  Google Scholar 

  • Banovac K, Gonzalez F. 1997. Evaluation and management of heterotopic ossification in patients with spinal cord injury. Spinal Cord 35: 158–162.

    CAS  PubMed  Google Scholar 

  • Banovac K, Williams J, Patrick L, Levi A. 2004. Prevention of heterotopic ossification after spinal cord injury with COX-2 selective inhibitor (rofecoxib). Spinal Cord 42: 707–710.

    CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM, Waters R. 1999a. The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord 37: 765–771.

    CAS  Google Scholar 

  • Bauman WA, Kahn NN, Grimm DR, Spungen AM. 1999b. Risk factors for atherogenesis and cardiovascular autonomic function in persons with spinal cord injury. Spinal Cord 37: 601–616.

    CAS  Google Scholar 

  • Bauman W, Spungen A, Wang J, Pierson R, Schwartz E. 1999c. Continuous loss of bone during chronic immobilization: A monozygotic twin study. Osteoporosis International 10: 123–127.

    CAS  Google Scholar 

  • BeDell KK, Scremin AM, Perell KL, Kunkel CF. 1996. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75(Suppl 1): 29–34.

    CAS  PubMed  Google Scholar 

  • Behrman AL, Harkema SJ. 2000. Locomotor training after human spinal cord injury. Phys Ther 80: 688–700.

    CAS  PubMed  Google Scholar 

  • Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. 2000. Electrical stimulation: Can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81(Suppl 8): 1090–1098.

    CAS  PubMed  Google Scholar 

  • Blasco M. 2005. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet 6: 611–622.

    CAS  PubMed  Google Scholar 

  • Brotherton SS, Krause JS, Nietert PJ. 2007. Falls in individuals with incomplete spinal cord injury. Spinal Cord 45: 37–40.

    CAS  PubMed  Google Scholar 

  • Carlson E, Chamberlain R. 2005. Allostatic load and health disparities: A theoretical orientation. Res Nurs Health 28: 306–315.

    CAS  PubMed  Google Scholar 

  • Castro MJ, Apple DF Jr, Hillegass EA, Dudley GA. 1999. Influence of complete spinal cord injury on skeletal muscle cross sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol 80(Suppl 4): 373–378.

    CAS  PubMed  Google Scholar 

  • Chan S, Blackburn E. 2004. Telomeres and telomerase. Philos Trans R Soc Lond B 359: 109–121.

    CAS  Google Scholar 

  • Chen SC, Lai CH, Chan WP, Huang MH, Tsai HW, et al. 2005. Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients. Disabil Rehabil 27(Suppl 22): 1337–1341.

    PubMed  Google Scholar 

  • Cherakas L, Aviv A, Valdes A, Hunkin J, Gardner J, et al. 2006. The effect of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 5: 361–365.

    Google Scholar 

  • Claydon VE, Hol AT, Eng JJ, Krassioukov AV. 2006. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil 87: 1106–1114.

    PubMed  Google Scholar 

  • Dalakas M, Elder G, Hallett M, et al. 1986. A long-term follow-up study of patients with post-poliomyelitis neuromuscular symptoms. N Engl J Med 314: 959–963.

    CAS  PubMed  Google Scholar 

  • Dauty M, Perrouin VB, Maugars Y, Dubois C, Mathe JF. 2000. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27(Suppl 2): 305–309.

    CAS  PubMed  Google Scholar 

  • de Bruin ED, Vanwanseele B, Dambacher MA, Dietz V, Stussi E. 2005. Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord 43(Suppl 2): 96–101.

    CAS  PubMed  Google Scholar 

  • Demirel G, Yilmaz H, Parker N, Onel S. 1998. Osteoporosis after spinal cord injury. Spinal Cord 36: 822–825.

    CAS  PubMed  Google Scholar 

  • Demirel S, Demirel G, Tukek T, Erk O, Yilmaz H. 2001. Risk factors for coronary heart disease in patients with spinal cord injury in Turkey. Spinal Cord 39: 134–138.

    CAS  PubMed  Google Scholar 

  • Demissie S, Levy D, Benjamin E, Cupples L, Gardner J, et al. 2006. Insulin resistance oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5: 325–330.

    CAS  PubMed  Google Scholar 

  • DeVivo MJ, Shewchuk RM, Stover SL, Black K, Go B. 1992. A cross sectional study of the relationship between age and current health status for persons with spinal cord injuries. Paraplegia 30: 820–827.

    CAS  PubMed  Google Scholar 

  • DeVivo M, Krause J, Lammertse D. 1999. Recent trends in mortality and causes of death in people with spinal cord injury. Arch Phys Med Rehab 80: 1411–1419.

    CAS  Google Scholar 

  • Ditunno JF Jr, Bituanno PL, Graziani V, Scieoletto G, Bernardi M, et al. 2000. Walking index for spinal cord injury (WISCI): An international multicenter validity and reliability study. Spinal Cord 38: 234–243.

    PubMed  Google Scholar 

  • Dudley GA, Castro MJ, Rogers S, Apple DF Jr. 1999. A simple means of increasing muscle size after spinal cord injury: A pilot study. Eur J Appl Physiol Occup Physiol 80(Suppl 4): 394–396.

    CAS  PubMed  Google Scholar 

  • Epel E, Blackburn E, Lin J, Dhabhar F, Adler N, et al. 2004. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101: 17312–17315.

    CAS  PubMed  Google Scholar 

  • Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, et al. 2003. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33(Suppl 5): 412–419.

    CAS  PubMed  Google Scholar 

  • Estores I, Harrington A, Banovac K. 2004. C-Reactive protein and erythrocyte sedimentation rate in patients with heterotopic ossification after spinal cord injury. J Spinal Cord Med 27: 434–437.

    Google Scholar 

  • Field-Fote EC. 2001. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil 82: 818–824.

    CAS  PubMed  Google Scholar 

  • Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, et al. 2001. The spinal cord injury functional ambulation inventory (SCI-FAI). J Rehabil Med 33: 177–181.

    CAS  PubMed  Google Scholar 

  • Field-Fote EC, Tepavac D. 2002. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther 82: 707–715.

    PubMed  Google Scholar 

  • Finch L, Barbeau H, Arsenault B. 1991. Influence of body weight support on normal human gait: Development of a gait retraining strategy. Phys Ther 71: 842–855.

    CAS  PubMed  Google Scholar 

  • Fitzpatrick A, Kronmal R, Gardner J, Psaty B, Jenny N, et al. 2007. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165: 14–21.

    PubMed  Google Scholar 

  • Fouad K, Pearson K. 2004. Restoring walking after spinal cord injury. Prog Neurobiol 73: 107–126.

    PubMed  Google Scholar 

  • Frenck R, Blackburn E, Shannon K. 1998. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 95: 5607–5610.

    CAS  PubMed  Google Scholar 

  • Frost F, Roach M, Kushner I, Screiber P. 2005. Inflammatory C-reactive protein and cytokine levels in asymptomatic people with chronic spinal cord injury. Arch Phys Med Rehabil 86: 312–317.

    PubMed  Google Scholar 

  • Garland DE, Foulkes GD, Adkins RH, Stewart CA, Yakura JS. 1994. Regional osteoporosis following incomplete spinal cord injury. Contemp Orthop 28(Suppl 2): 134–139.

    Google Scholar 

  • Garland DE, Maric Z, Adkins RH, Stewart CA. 1993. Bone mineral density about the knee in spinal cord injured patients with pathologic fractures. Contemp Orthop 26(Suppl 4): 375–379.

    Google Scholar 

  • Garland DE, Stewart CA, Adkins RH, et al. 1992. Osteoporosis after spinal cord injury. J Orthop Res 10: 371–378.

    CAS  PubMed  Google Scholar 

  • Garshick E, Kelley A, Cohen S, Garrison A, Tun C, et al. 2005. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43: 408–416.

    CAS  PubMed  Google Scholar 

  • Giangregorio LM, Hicks AL, Webber CE, et al. 2005. Body weight supported treadmill training in acute spinal cord injury: Impact on muscle and bone. Spinal Cord 43(Suppl 11): 649–657.

    CAS  PubMed  Google Scholar 

  • Giangregorio L, McCartney N. 2006. Bone loss and muscle atrophy in spinal cord injury: Epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 29: 489–500.

    PubMed  Google Scholar 

  • Gorgey A, Dudley G. 2006. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45: 304–309.

    PubMed  Google Scholar 

  • Groah SL, Weitzenkamp D, Sett P, Soni B, Savic G. 2001. The relationship between neurological level of injury and symptomatic cardiovascular disease risk in the aging spinal injured. Spinal Cord 39: 310–317.

    CAS  PubMed  Google Scholar 

  • Harkema S, Hurley SL, Patel UK, Requejo PS, Dobkin BH, et al. 1997. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77: 797–811.

    CAS  PubMed  Google Scholar 

  • Hartkopp A, Murphy R, Mohr T, Kjoer M, Biering-Sorensen F. 1998. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil. 79: 1133–1136.

    CAS  PubMed  Google Scholar 

  • Harvey LA, Newton-John T, Davis GM, Smith MB, Engel S. 1997. A comparison of the attitude of paraplegic individuals to the walkabout orthosis and the isocentric reciprocal gait orthosis. Spinal Cord 35: 580–584.

    CAS  PubMed  Google Scholar 

  • Hicks AL, Adams MM, Martin Ginis K, Giangregorio L, Latimer A, et al. 2005. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: Effects on functional walking ability and measures of subjective well-being. Spinal Cord 43: 291–298.

    CAS  PubMed  Google Scholar 

  • Hjeltnes N, Aksnes AK, Birkeland KI, Johansen J, Lannem A, et al. 1997. Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients. Am J Physiol. 273(Suppl 3, pt 2): R1072–R1079.

    CAS  PubMed  Google Scholar 

  • Hornby TG, Zemon DH, Campbell D. 2005. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther 85: 52–66.

    PubMed  Google Scholar 

  • Jacobs PL, Johnson B, Mahoney ET. 2003. Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia. J Spinal Cord Med 26: 384–389.

    PubMed  Google Scholar 

  • Jacobs PL, Nash MS. 2004. Exercise recommendations for individuals with spinal cord injury. Sports Med 34: 727–751.

    PubMed  Google Scholar 

  • Jaovisidha S, Sartoris D, Martin E, Foldes K, Szollar S, et al. 1998. Influence of heterotopic ossification of the hip on bone densiometry: A study of spinal cord injured patients. Spinal Cord 36: 647–653.

    CAS  PubMed  Google Scholar 

  • Jiang S, Dai L, Jiang L. 2006. Osteoporosis after spinal cord injury. Osteoporos Int 17: 180–192.

    PubMed  Google Scholar 

  • Johnston TE, Betz RR, Smith BT, Mulcahey MJ. 2003. Implanted functional electrical stimulation: An alternative for standing and walking in pediatric spinal cord injury. Spinal Cord 41: 144–152.

    CAS  PubMed  Google Scholar 

  • Kannisto M, Alaranta H, Merikanto J, Kroger H, Karkkainen J. 1998. Bone mineral status after pediatric spinal cord injury. Spinal Cord 36(Suppl 9): 641–646.

    CAS  PubMed  Google Scholar 

  • Karlamangla A, Singer B, Seeman T. 2006. Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur Studies of Successful Aging. Psychosomatic Medicine 68: 500–507.

    PubMed  Google Scholar 

  • Kawashima N, Sone Y, Nakazawa K, Akai M, Yano H. 2003. Energy expenditure during walking with weight-bearing control (WBC) orthosis in thoracic level of paraplegic patients. Spinal Cord 41: 506–510.

    CAS  PubMed  Google Scholar 

  • Kim CM, Eng JJ, Whittaker MW. 2004. Effects of a simple functional electric system and/or a hinged ankle-foot orthosis on walking in persons with incomplete spinal cord injury. Arch Phys Med Rehabil 85: 1718–1723.

    PubMed  Google Scholar 

  • Kirk JK, Nichols M, Spanger JG. 2002. Use of a peripheral DEXA measurement for osteoporosis screening. Fam Med 34: 201.

    PubMed  Google Scholar 

  • Krause J. 2004. Factors associated with risk for subsequent injuries after the onset of traumatic spinal cord injury. Arch Phys Med Rehab 85: 1503–1508.

    Google Scholar 

  • Krause JS, Morrisette D, Brotherton S, Karakostas T, Apple D. 2007a. Pain interference in ambulatory spinal cord injury. Top Spinal Cord Inj Rehabil 12: 91–96.

    Google Scholar 

  • Krause JS, Brotherton S, Morrisette D, Newman S, Karakostas T. 2007b. Does pain interference mediate the relationship of independence in ambulation with depressive symptoms after spinal cord injury? Rehabil Psychol 52: 162–169.

    Google Scholar 

  • Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, et al. 1993. Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74(Suppl 1): 73–78.

    CAS  PubMed  Google Scholar 

  • Lapointe R, Lajoie Y, Serresse O, Barbeau H. 2001. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord 39: 327–335.

    CAS  PubMed  Google Scholar 

  • LaVela S, Weaver F, Goldstein B, Chen K, Miskevics S, et al. 2006. Diabetes in individuals with spinal cord injury or disorder. J Spinal Cord Med 29: 387–395.

    PubMed  Google Scholar 

  • Lee M, Myers J, Hayes A, Madan S, Froelicher V, et al. 2005. C-Reactive protein, metabolic syndrome, and insulin resistance in individuals with spinal cord injury. J Spinal Cord Med 28: 20–25.

    PubMed  Google Scholar 

  • Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA. 1990. Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil. 71(Suppl 3): 207–209.

    CAS  PubMed  Google Scholar 

  • Liu CC, Theodorou DJ, Theodorou SJ, et al. 2000. Quantitativecomputed tomography in the evaluation of spinalosteoporosis following spinal cord injury. Osteoporos Int 11(Suppl 10): 889–896.

    CAS  PubMed  Google Scholar 

  • Lovely RG, Gregor RJ, Roy RR, Edgerton VR. 1986. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol 92: 421–435.

    CAS  PubMed  Google Scholar 

  • Mallory B. 1994. Autonomic function in the isolated spinal cord. The Physiological Basis of Rehabilitation Medicine. Downey JA, Myers SJ, Gonzalez EG, Lieberman JS, editors. Boston, Butterworth-Heinemann; pp. 519–542.

    Google Scholar 

  • Manns P, McCubbin J, Williams D. 2005. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 86: 1176–1181.

    PubMed  Google Scholar 

  • McEwen BS. 1998. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840: 33–44.

    CAS  PubMed  Google Scholar 

  • McEwen BS, Stellar E. 1993. Stress and the individual: Mechanisms leading to disease. Arch Int Med 153: 2093–2101.

    CAS  Google Scholar 

  • McEwen BS, Wingfield J. 2003. The concept of allostasis in biology and biomedicine. Horm Behav 43: 2–15.

    PubMed  Google Scholar 

  • Mirbagheri MM, Ladouceur M, Barbeau H, Kearney RE. 2002. The effects of long-term fes-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects. IEEE Trans Neural Syst Rehabil Eng 10: 280–289.

    PubMed  Google Scholar 

  • Modlesky CM, Bickel CS, Slade JM, Meyer RA, Cureton KJ, et al. 2004. Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. J Appl Physiol 96: 561–565.

    PubMed  Google Scholar 

  • Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, et al. 1997. Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61(Suppl 1): 22–25.

    CAS  PubMed  Google Scholar 

  • Morganti B, Scivoletto G, Ditunno P, Ditunno JF, Molinari M. 2005. Walking index for spinal cord injury (WISCI): Criterion validation. Spinal Cord 43: 27–33.

    CAS  PubMed  Google Scholar 

  • Myers J, Lee M, Kiratli J. 2007. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86: 142–152.

    PubMed  Google Scholar 

  • Nash MS, Bilsker S, Marcillo AE, Isaac SM, Botelho LA, et al. 1991. Reversal of adaptive left ventricular atrophy following electrically-stimulated exercise training in human tetraplegics. Paraplegia 29: 590–599.

    CAS  PubMed  Google Scholar 

  • Nash MS, Jacobs PL, Montalvo BM, Klose KJ, Guest RS, et al. 1997. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system. V. Lower extremity blood flow and hyperemic responses to occlusion are augmented by ambulation training. Arch Phys Med Rehabil 78: 808–814.

    CAS  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center. 2006. Spinal Cord Injury: Facts and Figures at a Glance. Birmingham: University of Alabama.

    Google Scholar 

  • Needham-Shropshire BM, Broton JG, Klose J, Lebwohl N, Guest RS, et al. 1997. Evaluation of a training program forpersons with SCI paraplegia using the Parastep 1Ambulation System. III. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78: 799–803.

    CAS  PubMed  Google Scholar 

  • Protas EJ, Holmes SA, Qureshy H, Johnson A, Lee D, et al. 2001. Supported treadmill ambulation training after spinal cord injury: A pilot study. Arch Phys Med Rehabil 82: 825–831.

    CAS  PubMed  Google Scholar 

  • Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, et al. 2001. Osteoporosis in patients with paralysis after spinal cord injury: A cross-sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121(Suppl 1–2): 75–78.

    CAS  PubMed  Google Scholar 

  • Saitoh E, Suzuki T, Sonoda S, Fujitani J, Tomita Y, et al. 1996. Clinical experience with a new hip-knee-ankle-foot orthotic system using a medial single hip joint for paraplegic standing and walking. Am J Phys Med Rehabil 75: 198–203.

    CAS  PubMed  Google Scholar 

  • Saltzstein RJ, Hardin S, Hastings J. 1992. Osteoporosis in spinal cord injury: Using an index of mobility and its relationship to bone density. J Am Paraplegia Soc 15(Suppl 4): 232–234.

    CAS  PubMed  Google Scholar 

  • Scivoletto G, Fuoco U, Morganti B, Cosentino E, Molinari M. 2004. Pressure sores and blood and serum dysmetabolism in spinal cord injury patients. Spinal Cord 42: 473–476.

    CAS  PubMed  Google Scholar 

  • Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K, et al. 1999. Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(Suppl 12): 1531–1536.

    CAS  PubMed  Google Scholar 

  • Seeman T, Crimmins E, Huang M, Singer B, Bucur A, et al. 2004. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Soc Sci Med 58: 1985–1997.

    PubMed  Google Scholar 

  • Seeman T, McEwen B, Rowe J, Singer B. 2001. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci USA 98: 4770–4775.

    CAS  PubMed  Google Scholar 

  • Seeman T, Singer B, Rowe J, Horwitz R, McEwen B. 1997. Price of adaptation – allostatic load and its health consequences. Arch Int Med 157: 2259–2268.

    CAS  Google Scholar 

  • Segal J, Gonzales E, Yousefi S, Jamishidipour L, Brunneman S. 1997. Circulating levels of IL-2R, ICAM-1, and IL-6 in spinal cord injuries. Arch Phys Med Rehabil 78: 44–47.

    CAS  PubMed  Google Scholar 

  • Simon N, Smoller J, McNamara K, Maser R, Zalta A, et al. 2006. Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 60: 432–435.

    CAS  PubMed  Google Scholar 

  • Spungen A, Adkins R, Stewart C, Wang J, Pierson R, et al. 2003. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J Appl Physiol 95: 2398–2407.

    PubMed  Google Scholar 

  • Sterling P, Eyer J. 1988. Allostasis: A new paradigm to explain arousal pathology. Handbook of Life Stress, Cognition, and Health. Fisher S, Reason J, editors. New York: John Wiley; pp. 629–651.

    Google Scholar 

  • Stewart BG, Tarnopolsky MA, Hicks AL, McCartney N, Mahoney DJ, et al. 2004. Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle Nerve 30(Suppl 1): 61–68.

    PubMed  Google Scholar 

  • Strauss D, DeVivo M, Paculdo D, Shavelle R. 2006.Trends in life expectancy after spinal cord injury. Arch Phys Med Rehabil 87: 1079–1085.

    PubMed  Google Scholar 

  • Tharion G, Prasad K, Gopalan L, Bhattacharji S. 1998. Glucose intolerance and dyslipidemias in persons with paraplegia and tetraplegia in South India. Spinal Cord 36: 228–230.

    CAS  PubMed  Google Scholar 

  • Thoumie P, Perrouin-Verbe B, Le Claire G, Bedoiseau M, Busnel M, et al. 1995. Restoration of functional gait in paraplegic patients with the rgo-ii hybrid orthosis. A multicentre controlled study. I. Clinical evaluation. Paraplegia 33: 647–653.

    CAS  PubMed  Google Scholar 

  • Trimble MH, Behrman AL, Flynn SM, Thigpen MT, Thompson FJ. 2001. Acute effects of locomotor training on overground walking speed and h-reflex modulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 24: 74–80.

    CAS  PubMed  Google Scholar 

  • Tsuzuku S, Ikegami Y, Yabe K. 1999. Bone mineral density differences between paraplegic and quadriplegic patients: A cross sectional study. Spinal Cord 37: 358–361.

    CAS  PubMed  Google Scholar 

  • Van Hedel HJ, Wirz MM, Dietz V. 2005. Assessing walking ability in subjects with spinal cord injury: Validity and reliability of 3 walking tests. Arch Phys Med Rehabil 86: 190–196.

    PubMed  Google Scholar 

  • Vestergaard P, Krogh K, Rejnmark L, Mosekilde L. 1998. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36: 790–796.

    CAS  PubMed  Google Scholar 

  • Washburn RA, Figoni SF. 1998. Physical activity and chronic cardiovascular disease prevention in spinal cord injury: A comprehensive literature review. Top Spinal Cord Inj Rehabil 3: 16–32.

    Google Scholar 

  • Whiteneck GG, Charlifue SW, Frankel HL, Fraser MH, Gardner BP, et al. 1992. Mortality, morbidity, and psycho-social outcomes of persons spinal cord injured more than 20 years ago. Paraplegia 30: 617–630.

    CAS  PubMed  Google Scholar 

  • Wilmet E, Ismail A, Heilporn A, Welraeds D, Bergmann P. 1995. Longitudinal study of the bone mineral content and soft tissue composition after spinal cord section. Paraplegia 33: 674–677.

    CAS  PubMed  Google Scholar 

  • Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, et al. 2005. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil 86: 672–680.

    PubMed  Google Scholar 

  • World Health Organization. 2002. Reducing Risks, Promoting Healthy Life: World Health Report 2002. Geneva: World Health Organization.

    Google Scholar 

  • Yakura JS, Waters RL, Adkins RH. 1990. Changes in ambulation parameters in spinal cord injury individuals following rehabilitation. Paraplegia 28: 364–370.

    CAS  PubMed  Google Scholar 

  • Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, et al. 2004. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: A cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15(Suppl 3): 180–189.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Krause, J.S., Newman, S.D., Brotherton, S.S. (2009). Clinical Considerations in Translational Research with Chronic Spinal Cord Injury: Intervention Readiness and Intervention Impact. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_24

Download citation

Publish with us

Policies and ethics