Skip to main content

Ubiquitin/Proteasome and Autophagy/Lysosome Pathways: Comparison and Role in Neurodegeneration

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases as well as amyotrophic lateral sclerosis, are a heterogeneous group of clinical diseases that are characterized by the selective loss of neurons in specific regions of the CNS. Despite their variability they have similar features including the accumulation of misfolded proteins that eventually develop into inclusion bodies. Whether these protein deposits are pathogenic or represent a coping mechanism to prolong survival of the affected neurons is a hotly debated issue. One important point to consider is that these protein deposits are indicative of a disease-state as they are not prevalent in healthy cells. Ubiquitinated proteins are major components of these proteinaceous cytoplasmic or nuclear inclusions suggesting that impaired proteasome activity and the ubiquitination machinery may be main players in this process. Emerging data revealed that autophagosomes are also components of inclusion bodies, implicating the autophagy/lysosome pathway in neurodegenerative disorders as well. Herein, we compare some of the most important characteristics of these two pathways for intracellular protein degradation and discuss their potential role in neurodegeneration. When the proteasome is impaired, it is possible that autophagy may be the alternate pathway for clearing out aggregated ubiquitinated proteins. The question emerges if this potential “survival” mechanism can be explored as a strategy to overcome the most common feature shared by various neurodegenerative disorders, i.e., protein aggregation manifested as inclusion bodies. One potential drawback is that degradation through autophagy seems to be a “bulky,” nonspecific process. A thorough knowledge of the mechanisms involved in the targeting of substrates to autophagy will provide clues to the putative specificity of this pathway so that its ectopic manipulation will target only abnormal protein aggregates and not critical intracellular components, the removal of which may cause cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

ALP:

autophagy/lysosome pathway

Atg:

autophagy related genes

CMA:

chaperone-mediated autophagy

E1:

ubiquitin activating enzyme

E2:

ubiquitin conjugating enzyme

E3:

ubiquitin ligase

E4:

ubiquitin-chain elongating factor

HD:

Huntington’s disease

HDAC6:

histone deacetylase 6

LC3:

microtubule-associated protein-light chain 3

LIR:

LC3-interacting region

PB1:

protein binding domain1

PD:

Parkinson’s disease

PE:

phosphatidylethanolamine

p62/SQSTM1:

p62/sequestosome1

Ub:

ubiquitin

UBA:

ubiquitin-associating domain

UBL:

ubiquitin-like

UPP:

ubiquitin/proteasome pathway

References

  • Abeliovich H, Klionsky DJ. 2001. Autophagy in yeast: Mechanistic insights and physiological function. Microbiol Mol Biol Rev 65: 463–479.

    Article  CAS  PubMed  Google Scholar 

  • Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. 1998. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21: 516–520.

    Article  CAS  PubMed  Google Scholar 

  • Bader N, Jung T, Grune T. 2007. The proteasome and its role in nuclear protein maintenance. Exp Gerontol 42: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL. 2003. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11: 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Boland B, Nixon RA. 2006. Neuronal macroautophagy: From development to degeneration. Mol Aspects Med 27: 503–519.

    Article  CAS  PubMed  Google Scholar 

  • Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, et al. 2000. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346 (Pt 1): 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Hochstrasser M. 1996. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86: 961–972.

    Article  CAS  PubMed  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL. 1996. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847.

    Article  CAS  PubMed  Google Scholar 

  • DeMartino GN, Slaughter CA. 1999. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem 274: 22123–22126.

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, et al. 2000. A gated channel into the proteasome core particle. Nat Struct Biol 7: 1062–1067.

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, et al. 1997. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Gronostajski RM, Pardee AB, Goldberg AL. 1985. The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J Biol Chem 260: 3344–3349.

    CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885–889.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann-Petersen R, Semple CA, Ponting CP, Hendil KB, Gordon C. 2003. UBA domain containing proteins in fission yeast. Int J Biochem Cell Biol 35: 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A. 1998. The ubiquitin system. Annu Rev Biochem 67: 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Jenner P. 2003. Oxidative stress in Parkinson’s disease. Ann Neurol 53 (Suppl 3): S26–S36.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DE. 2000. Noncaspase proteases in apoptosis. Leukemia 14: 1695–1703.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Gee J, Ding Q. 2002. The proteasome in brain aging. Ageing Res Rev 1: 279–293.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR. 2000. Impaired proteasome function in Alzheimer’s disease. J Neurochem 75: 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard K, Taylor MP, Jackson WT. 2004. Cellular autophagy: Surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2: 301–314.

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, Akopian TN, Castillo V, Goldberg AL. 1999. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 4: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ. 2005. The molecular machinery of autophagy: Unanswered questions. J Cell Sci 118: 7–18.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Larsen KE, Sulzer D. 2002. Autophagy in neurons: A review. Histol Histopathol 17: 897–908.

    CAS  PubMed  Google Scholar 

  • Lee DH, Goldberg AL. 1998. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol 8: 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Corboy MJ, DeMartino GN, Thomas PJ. 2003. Endoproteolytic activity of the proteasome. Science 299: 408–411.

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, et al. 1988. Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease. J Pathol 155: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Madura K. 2004. Rad23 and Rpn10: Perennial wallflowers join the melee. Trends Biochem Sci 29: 637–640.

    Article  CAS  PubMed  Google Scholar 

  • Massey AC, Zhang C, Cuervo AM. 2006. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73: 205–235.

    Article  CAS  PubMed  Google Scholar 

  • McGrath ME. 1999. The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28: 181–204.

    Article  CAS  PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. 2003. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179: 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ. 2007. Protein turnover via autophagy: Implications for metabolism (*). Annu Rev Nutr 27: 19–40.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T. 2002. Autophagosome formation in mammalian cells. Cell Struct Funct 27: 421–429.

    Article  PubMed  Google Scholar 

  • Moore DJ, Dawson VL, Dawson TM. 2003. Role for the ubiquitin-proteasome system in Parkinson’s disease and other neurodegenerative brain amyloidoses. Neuromol Med 4: 95–108.

    Article  Google Scholar 

  • Ohsumi Y. 2001. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Wilk S. 2000. Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 383: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. 2007a. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy 3: 643–645.

    CAS  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, et al. 2007b. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447: 859–863.

    Article  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145.

    Article  CAS  PubMed  Google Scholar 

  • Park I, Chung J, Walsh CT, Yun Y, Strominger JL, et al. 1995. Phosphotyrosine-independent binding of a 62-kDa protein to the src homology 2 (SH2) domain of p56lck and its regulation by phosphorylation of Ser-59 in the lck unique N-terminal region. Proc Natl Acad Sci USA 92: 12338–12342.

    Article  CAS  PubMed  Google Scholar 

  • Raasi S, Orlov I, Fleming KG, Pickart CM. 2004. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J Mol Biol 341: 1367–1379.

    Article  CAS  PubMed  Google Scholar 

  • Rape M, Jentsch S. 2004. Productive RUPture: Activation of transcription factors by proteasomal processing. Biochim Biophys Acta 1695: 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Reggiori F, Klionsky DJ. 2005. Autophagosomes: Biogenesis from scratch? Curr Opin Cell Biol 17: 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC. 2006. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke G, Kraft R, Kostka S, Henklein P, Frommel C, et al. 1996. Analysis of mammalian 20S proteasome biogenesis: The maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15: 6887–6898.

    CAS  PubMed  Google Scholar 

  • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, et al. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24: 8055–8068.

    Article  CAS  PubMed  Google Scholar 

  • Seo H, Sonntag KC, Isacson O. 2004. Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 56: 319–328.

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Witt S, Felderer K, Rockel B, Baumeister W, et al. 2006. 20S proteasomes have the potential to keep substrates in store for continual degradation. J Biol Chem 281: 9569–9575.

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson CV. 2007. Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20S proteasome. J Biol Chem 282: 18448–18457.

    Article  CAS  PubMed  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94–102.

    Article  CAS  PubMed  Google Scholar 

  • Wang CW, Klionsky DJ. 2003. The molecular mechanism of autophagy. Mol Med 9: 65–76.

    PubMed  Google Scholar 

  • Wang R, Chait BT, Wolf I, Kohanski RA, Cardozo C. 1999. Lysozyme degradation by the bovine multicatalytic proteinase complex (proteasome): Evidence for a nonprocessive mode of degradation. Biochemistry 38: 14573–14581.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Figueiredo-Pereira ME. 2005. Inhibition of sequestosome 1/p62 up-regulation prevents aggregation of ubiquitinated proteins induced by prostaglandin J2 without reducing its neurotoxicity. Mol Cell Neurosci 29: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR, Seeger M, Hartmann-Petersen R, Stone M, Wallace M, et al. 2001. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat Cell Biol 3: 939–943.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KD. 1999. Ubiquitin-dependent signaling: The role of ubiquitination in the response of cells to their environment. J Nutr 129: 1933–1936.

    CAS  PubMed  Google Scholar 

  • Wojcik C, DeMartino GN. 2003. Intracellular localization of proteasomes. Int J Biochem Cell Biol 35: 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, et al. 2006. Signaling, polyubiquitination, trafficking, and inclusions: Sequestosome 1/p62’s role in neurodegenerative disease. J Biomed Biotechnol 2006: 62079.

    PubMed  Google Scholar 

  • Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M. 1998. Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a. J Biol Chem 273: 5461–5467.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Please note that this review is not intended to be comprehensive and we apologize to the authors whose work is not mentioned. This work was supported by NIH [NS41073 (SNRP) to M.E.F.P. (head of sub-project) from NINDS, and RR03037 to Hunter College from NIGMS/RCMI].

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Myeku, N., Figueiredo-Pereira, M.E. (2009). Ubiquitin/Proteasome and Autophagy/Lysosome Pathways: Comparison and Role in Neurodegeneration. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_21

Download citation

Publish with us

Policies and ethics