Skip to main content

Free Radicals and Neuroprotection in Traumatic Brain and Spinal Cord Injury

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter reviews the considerable body of evidence that supports the role of reactive oxygen species (ROS), reactive nitrogen species (RNS) and their derived oxygen free radicals in the pathophysiology of acute traumatic brain injury (TBI) and spinal cord injury (SCI). Free radical‐induced oxidative damage to membrane lipids and proteins occurs in the injured brain of spinal cord within the first minutes and hours and has been implicated in the disruption of neuronal ion homeostasis, exacerbation of glutamate‐mediated excitotoxicity, mitochondrial respiratory dysfunction and microvascular structural and functional damage. Lipid peroxidation (LP) is a key mechanism of the radical‐induced secondary injury. Several free radical scavengers and LP inhibitors have been shown to be neuroprotective in animals models of TBI and/or SCI strongly implicating free radical‐induced LP as an important target for inhibition of secondary CNS injury. The glucocorticoid steroid methylprednisolone which has been shown to decrease post‐traumatic LP in the injured spinal cord when administered in large doses has been shown to improve neurological recovery in SCI clinical trials. The non‐glucocorticoid 21‐aminosteroid tirilazad has also shown evidence of efficacy in SCI patients and in a subset of TBI patients who have post‐traumatic subarachnoid hemorrhage. Improved antioxidants approaches are presented which either more potently inhibit LP or that scavenge the RNS peroxynitrite (PN) or its highly reactive free radical products. Finally, the feasibility of developing compounds with dual antioxidant mechanisms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LP:

lipid peroxidation

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SCI:

spinal cord injury

TBI:

Traumatic brain injury

References

  • Anderson DK, Means ED, Waters TR, Green ES. 1982. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg 56(1): 106–113.

    CAS  PubMed  Google Scholar 

  • Anderson DK, Hall ED, Braughler JM, McCall JM, Means ED. 1991. Effect of delayed administration of U74006F (tirilazad mesylate) on recovery of locomotor function after experimental spinal cord injury. J Neurotrauma 8(3): 187–192.

    CAS  PubMed  Google Scholar 

  • Anderson DK, Saunders RD, Demediuk P, Dugan LL, Braughler JM, et al. 1985. Lipid hydrolysis and peroxidation in injured spinal cord: Partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 2(4): 257–267.

    CAS  PubMed  Google Scholar 

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. 1997. Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765(2): 283–290.

    CAS  PubMed  Google Scholar 

  • Bao F, Liu D. 2002. Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 115(3): 839–849.

    CAS  PubMed  Google Scholar 

  • Bao F, Liu D. 2003. Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 116(1): 59–70.

    CAS  PubMed  Google Scholar 

  • Bao F, De Witt DS, Prough DS, Liu D. 2003. Peroxynitrite generated in the rat spinal cord induces oxidation and nitration of proteins: Reduction by Mn (III) tetrakis (4-benzoic acid) porphyrin. J Neurosci Res 71(2): 220–227.

    CAS  PubMed  Google Scholar 

  • Beckman JS. 1991. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15(1): 53–59.

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4): 1620–1624.

    CAS  PubMed  Google Scholar 

  • Behrmann DL, Bresnahan JC, Beattie MS. 1994. Modeling of acute spinal cord injury in the rat: Neuroprotection and enhanced recovery with methylprednisolone, U-74006F and YM-14673. Exp Neurol 126(1): 61–75.

    CAS  PubMed  Google Scholar 

  • Beit-Yannai E, Zhang R, Trembovler V, Samuni A, Shohami E. 1996. Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res 717(1–2): 22–28.

    CAS  PubMed  Google Scholar 

  • Blanchard B, Pompon D, Ducrocq C. 2000. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 29(3): 184–192.

    CAS  PubMed  Google Scholar 

  • Bracken MB. 1993. Pharmacological treatment of acute spinal cord injury: Current status and future projects. J Emerg Med 11 Suppl 1: 43–48.

    PubMed  Google Scholar 

  • Bracken MB, Holford TR. 1993. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 79(4): 500–507.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, et al. 1984. Efficacy of methylprednisolone in acute spinal cord injury. Jama 251(1): 45–52.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Jr., Holford TR, Baskin DS, et al. 1992. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. J Neurosurg 76(1): 23–31.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, et al. 1990. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med 322(20): 1405–1411.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Hellenbrand KG, Collins WF, Leo LS, et al. 1985. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the national acute spinal cord injury study. J Neurosurg 63(5): 704–713.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, et al. 1997. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. Jama 277(20): 1597–1604.

    CAS  PubMed  Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, et al. 1998. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third national acute spinal cord injury randomized controlled trial. J Neurosurg 89(5): 699–706.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Hall ED. 1982. Correlation of methylprednisolone levels in cat spinal cord with its effects on (Na++K+)-ATPase, lipid peroxidation, and alpha motor neuron function. J Neurosurg 56(6): 838–844.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Hall ED. 1983a. Lactate and pyruvate metabolism in injured cat spinal cord before and after a single large intravenous dose of methylprednisolone. J Neurosurg 59(2): 256–261.

    CAS  Google Scholar 

  • Braughler JM, Hall ED. 1983b. Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester. J Neurosurg 58(4): 538–542.

    CAS  Google Scholar 

  • Braughler JM, Hall ED. 1984. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J Neurosurg 61(2): 290–295.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Hall ED, Means ED, Waters TR, Anderson DK. 1987. Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg 67(1): 102–105.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Chase RL, Neff GL, Yonkers PA, Day JS, et al. 1988. A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates adrenocorticotropin secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells. J Pharmacol Exp Ther 244(2): 423–427.

    CAS  PubMed  Google Scholar 

  • Bringold U, Ghafourifar P, Richter C. 2000. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 29(3–4): 343–348.

    CAS  PubMed  Google Scholar 

  • Carroll RT, Galatsis P, Borosky S, Kopec KK, Kumar V, et al. 2000. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol 13(4): 294–300.

    CAS  PubMed  Google Scholar 

  • Chabrier PE, Auguet M, Spinnewyn B, Auvin S, Cornet S, et al. 1999. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: A promising neuroprotective strategy. Proc Natl Acad Sci USA 96(19): 10824–10829.

    CAS  PubMed  Google Scholar 

  • Chan PH, Epstein CJ, Li Y, Huang TT, Carlson E, et al. 1995. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma 12(5): 815–824.

    CAS  PubMed  Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML. 1980. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl 492: 91–119.

    CAS  PubMed  Google Scholar 

  • Dimlich RV, Tornheim PA, Kindel RM, Hall ED, Braughler JM, et al. 1990. Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. Adv Neurol 52: 365–375.

    CAS  PubMed  Google Scholar 

  • Farooque M, Hillered L, Holtz A, Olsson Y. 1996. Effects of methylprednisolone on extracellular lactic acidosis and amino acids after severe compression injury of rat spinal cord. J Neurochem 66(3): 1125–1130.

    CAS  PubMed  Google Scholar 

  • Finkel E. 2001. The Mitochondrion: Is it central to apoptosis? Science 292(5517): 624–626.

    CAS  PubMed  Google Scholar 

  • Gahm C, Danilov A, Holmin S, Wiklund PN, Brundin L, et al. 2005. Reduced neuronal injury after treatment with NG-nitro-L-arginine methyl ester (L-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion. Neurosurgery 57(6): 1272–1281; discussion 1272–1281.

    PubMed  Google Scholar 

  • Ginsberg MD, Becker DA, Busto R, Belayev A, Zhang Y, et al. 2003. Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. Ann Neurol 54(3): 330–342.

    CAS  PubMed  Google Scholar 

  • Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD. 1995. Glutamate release and free radical production following brain injury: Effects of posttraumatic hypothermia. J Neurochem 65(4): 1704–1711.

    CAS  PubMed  Google Scholar 

  • Green AR, Ashwood T, Odergren T, Jackson DM. 2003. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol Ther 100(3): 195–214.

    CAS  PubMed  Google Scholar 

  • Hall ED. 1992. The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76(1): 13–22.

    CAS  PubMed  Google Scholar 

  • Hall ED. 1997. Lazaroid: Mechanisms of action and implications for disorders of the CNS. Neuroscientist 3: 42–51.

    CAS  Google Scholar 

  • Hall ED, Braughler JM. 1981. Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 73(1): 321–324.

    CAS  PubMed  Google Scholar 

  • Hall ED, Braughler JM. 1982. Glucocorticoid mechanisms in acute spinal cord injury: A review and therapeutic rationale. Surg Neurol 18(5): 320–327.

    CAS  PubMed  Google Scholar 

  • Hall ED, Braughler JM. 1993. Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 71: 81–105.

    CAS  PubMed  Google Scholar 

  • Hall ED, Andrus PK, Yonkers PA. 1993. Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60(2): 588594.

    Google Scholar 

  • Hall ED, Wolf DL. 1986. A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neurosurg 64(6): 951–961.

    CAS  PubMed  Google Scholar 

  • Hall ED, Kupina NC, Althaus JS. 1999. Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci 890: 462–468.

    CAS  PubMed  Google Scholar 

  • Hall ED, McCall JM, Means ED. 1994. Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28: 221–268.

    CAS  PubMed  Google Scholar 

  • Hall ED, Wolf DL, Braughler JM. 1984. Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis. J Neurosurg 61(1): 124–130.

    CAS  PubMed  Google Scholar 

  • Hall ED, Detloff MR, Johnson K, Kupina NC. 2004. Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21(1): 9–20.

    PubMed  Google Scholar 

  • Hall ED, Yonkers PA, McCall JM, Braughler JM. 1988. Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68(3): 456–461.

    CAS  PubMed  Google Scholar 

  • Hall ED, Yonkers PA, Taylor BM, Sun FF. 1995. Lack of effect of postinjury treatment with methylprednisolone or tirilazad mesylate on the increase in eicosanoid levels in the acutely injured cat spinal cord. J Neurotrauma 12(3): 245–256.

    CAS  PubMed  Google Scholar 

  • Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK. 1992. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9 Suppl 2: S425–S442.

    PubMed  Google Scholar 

  • Hall ED, Andrus PK, Smith SL, Fleck TJ, Scherch HM, et al. 1997. Pyrrolopyrimidines: Novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia models. J Pharmacol Exp Ther 281(2): 895–904.

    CAS  PubMed  Google Scholar 

  • Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, et al. 1991. U-78517F: A potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258(2): 688–694.

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC. 2007. Free radicals in biology and medicine (4th Ed.): Oxford University Press. 1-851 pp.

    Google Scholar 

  • Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, et al. 1999. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410(2): 215–228.

    CAS  PubMed  Google Scholar 

  • Hillard VH, Peng H, Zhang Y, Das K, Murali R, et al. 2004. Tempol, a nitroxide antioxidant, improves locomotor and histological outcomes after spinal cord contusion in rats. J Neurotrauma 21(10): 1405–1414.

    PubMed  Google Scholar 

  • Holtz A, Nystrom B, Gerdin B. 1990. Effect of methylprednisolone on motor function and spinal cord blood flow after spinal cord compression in rats. Acta Neurol Scand 82(1): 68–73.

    CAS  PubMed  Google Scholar 

  • Hunot S, Flavell RA. 2001. APOPTOSIS: Death of a monopoly? Science 292(5518): 865–866.

    CAS  PubMed  Google Scholar 

  • Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD, et al. 1997a. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80(3): 685–696.

    CAS  Google Scholar 

  • Keller JN, Pang Z, Geddes JW, Begley JG, Germeyer A, et al. 1997b. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. J Neurochem 69(1): 273–284.

    CAS  Google Scholar 

  • Kim CD, Shin HK, Lee HS, Lee JH, Lee TH, et al. 2002. Gene transfer of Cu/Zn SOD to cerebral vessels prevents FPI-induced CBF autoregulatory dysfunction. Am J Physiol Heart Circ Physiol 282(5): H1836–H1842.

    CAS  PubMed  Google Scholar 

  • Kontos HA. 1989. Oxygen radicals in CNS damage. Chem Biol Interact 72(3): 229–255.

    CAS  PubMed  Google Scholar 

  • Kontos HA, Povlishock JT. 1986. Oxygen radicals in brain injury. Cent Nerv Syst Trauma 3(4): 257–263.

    CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP. 1986. Superoxide production in experimental brain injury. J Neurosurg 64(5): 803–807.

    CAS  PubMed  Google Scholar 

  • Koyanagi I, Tator CH. 1997. Effect of a single huge dose of methylprednisolone on blood flow, evoked potentials, and histology after acute spinal cord injury in the rat. Neurol Res 19(3): 289–299.

    CAS  PubMed  Google Scholar 

  • Kristal BS, Dubinsky JM. 1997. Mitochondrial permeability transition in the central nervous system: Induction by calcium cycling-dependent and -independent pathways. J Neurochem 69: 524–538.

    CAS  PubMed  Google Scholar 

  • Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP. 1997. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17(13): 5089–5100.

    CAS  PubMed  Google Scholar 

  • Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K. 2000. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev (2): CD000565.

    PubMed  Google Scholar 

  • Lewen A, Matz P, Chan PH. 2000. Free radical pathways in CNS injury. J Neurotrauma 17(10): 871–890.

    CAS  PubMed  Google Scholar 

  • Liu D, Li L, Augustus L. 2001. Prostaglandin release by spinal cord injury mediates production of hydroxyl radical, malondialdehyde and cell death: A site of the neuroprotective action of methylprednisolone. J Neurochem 77(4): 1036–1047.

    CAS  PubMed  Google Scholar 

  • Liu D, Bao F, Prough DS, Dewitt DS. 2005. Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: Reduction by a metalloporphyrin. J Neurotrauma 22(10): 1123–1133.

    CAS  PubMed  Google Scholar 

  • Lopez-Figueroa MO, Caamano C, Morano MI, Ronn LC, Akil H, et al. 2000. Direct evidence of nitric oxide presence within mitochondria. Biochem Biophys Res Commun 272(1): 129–133.

    CAS  PubMed  Google Scholar 

  • Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. 1994. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc Natl Acad Sci USA 91(8): 3191–3195.

    CAS  PubMed  Google Scholar 

  • Maas AI, Murray G, Henney H III, Kassem N, Legrand V, et al. 2006. Efficacy and safety of dexanabinol in severe traumatic brain injury: Results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 5(1): 38–45.

    CAS  PubMed  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. 1997. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 68(1): 255–264.

    CAS  PubMed  Google Scholar 

  • Marklund N, Clausen F, McIntosh TK, Hillered L. 2001b. Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat. J Neurotrauma 18(8): 821–832.

    CAS  Google Scholar 

  • Marklund N, Lewander T, Clausen F, Hillered L. 2001c. Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J Cereb Blood Flow Metab 21(11): 1259–1267.

    CAS  Google Scholar 

  • Marklund N, Sihver S, Langstrom B, Bergstrom M, Hillered L. 2002. Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats. J Neurotrauma 19(10): 1139–1153.

    PubMed  Google Scholar 

  • Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, et al. 2001a. Alpha-Phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochir (Wien) 143(1): 73–81.

    CAS  Google Scholar 

  • Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, et al. 1998. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89(4): 519–525.

    CAS  PubMed  Google Scholar 

  • Matsushita M, Xiong G. 1997. Projections from the cervical enlargement to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 377(2): 251–261.

    CAS  PubMed  Google Scholar 

  • Mattson MP, Barger SW, Begley JG, Mark RJ. 1995. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol 46: 187–216.

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Thomas M, Smith D, Banbury M. 1992. The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9(1): 33–46.

    CAS  PubMed  Google Scholar 

  • Mesenge C, Charriaut-Marlangue C, Verrecchia C, Allix M, Boulu RR, et al. 1998. Reduction of tyrosine nitration after N(omega)-nitro-L-arginine-methylester treatment of mice with traumatic brain injury. Eur J Pharmacol 353(1): 53–57.

    CAS  PubMed  Google Scholar 

  • Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, et al. 1996. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 85(5): 885–891.

    CAS  PubMed  Google Scholar 

  • Monyer H, Hartley DM, Choi DW. 1990. 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5(2): 121–126.

    CAS  PubMed  Google Scholar 

  • Morrow JD, Roberts LJ. 2002. The isoprostanes: Their role as an index of oxidant stress status in human pulmonary disease. Am J Respir Crit Care Med 166(12 Pt 2): S25–S30.

    PubMed  Google Scholar 

  • Muizelaar JP, Kupiec JW, Rapp LA. 1995. PEG-SOD after head injury. J Neurosurg 83(5): 942.

    CAS  PubMed  Google Scholar 

  • Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, et al. 2002. Clinical trials in head injury. J Neurotrauma 19(5): 503–557.

    PubMed  Google Scholar 

  • Neely MD, Sidell KR, Graham DG, Montine TJ. 1999. The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72(6): 2323–2333.

    CAS  PubMed  Google Scholar 

  • Nicholls DG, Budd SL. 2000. Mitochondria and neuronal survival. Physiol Rev 80(1): 315–360.

    CAS  PubMed  Google Scholar 

  • Nishio S, Yunoki M, Noguchi Y, Kawauchi M, Asari S, et al. 1997. Detection of lipid peroxidation and hydroxyl radicals in brain contusion of rats. Acta Neurochir Suppl (Wien) 70: 84–86.

    CAS  Google Scholar 

  • Okonkwo DO, Povlishock JT. 1999. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19(4): 443–451.

    CAS  PubMed  Google Scholar 

  • Okonkwo DO, Buki A, Siman R, Povlishock JT. 1999. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 10(2): 353–358.

    CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F. 1990. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10(3): 1035–1041.

    CAS  PubMed  Google Scholar 

  • Pratico D, Reiss P, Tang LX, Sung S, Rokach J, et al. 2002. Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J Neurochem 80(5): 894–898.

    CAS  PubMed  Google Scholar 

  • Rabchevsky AG, Fugaccia I, Sullivan PG, Blades DA, Scheff SW. 2002. Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res 68(1): 7–18.

    CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA. 1991. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288(2): 481–487.

    CAS  PubMed  Google Scholar 

  • Rego AC, Ward MW, Nicholls DG. 2001. Mitochondria control ampa/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J Neurosci 21(6): 1893–1901.

    CAS  PubMed  Google Scholar 

  • Rohn TT, Quinn MT. 1998. Inhibition of peroxynitrite-mediated tyrosine nitration by a novel pyrrolopyrimidine antioxidant. Eur J Pharmacol 353(2–3): 329–336.

    CAS  PubMed  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF. 1993a. Inhibition of the Ca pump of intact red blood cells by t-butyl hydroperoxide: Importance of glutathione peroxidase. Biochim Biophys Acta 1153(1): 67–76.

    CAS  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF. 1993b. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol 46(3): 525–534.

    CAS  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF. 1995. Inhibition by activated neutrophils of the Ca2+ pump ATPase of intact red blood cells. Free Radic Biol Med 18(4): 655–667.

    CAS  PubMed  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF. 1996. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol 51(4): 471–476.

    CAS  PubMed  Google Scholar 

  • Sadrzadeh SM, Eaton JW. 1988. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest 82(5): 1510–1515.

    CAS  PubMed  Google Scholar 

  • Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. 1984. Hemoglobin. A biologic fenton reagent. J Biol Chem 259(23): 14354–14356.

    CAS  PubMed  Google Scholar 

  • Scheff SW, Sullivan PG. 1999. Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 16(9): 783–792.

    CAS  PubMed  Google Scholar 

  • Scott GS, Cuzzocrea S, Genovese T, Koprowski H, Hooper DC. 2005. Uric acid protects against secondary damage after spinal cord injury. Proc Natl Acad Sci USA 102(9): 3483–3488.

    CAS  PubMed  Google Scholar 

  • Sevanian A, Kim E. 1985. Phospholipase A2 dependent release of fatty acids from peroxidized membranes. J Free Radic Biol Med 1(4): 263–271.

    CAS  PubMed  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED. 2006. Time course of posttraumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: Implications for neuroprotective therapy. J Cereb Blood Flow Metab 26: 1407–1418.

    CAS  PubMed  Google Scholar 

  • Smith SL, Andrus PK, Zhang JR, Hall ED. 1994. Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11(4): 393–404.

    CAS  PubMed  Google Scholar 

  • Squadrito GL, Pryor WA. 1998. Oxidative chemistry of nitric oxide: The roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25(4–5): 392–403.

    CAS  PubMed  Google Scholar 

  • Squadrito GL, Pryor WA. 2002. Mapping the reaction of peroxynitrite with CO2: Energetics, reactive species, and biological implications. Chem Res Toxicol 15(7): 885–895.

    CAS  PubMed  Google Scholar 

  • Stewart VC, Sharpe MA, Clark JB, Heales SJ. 2000. Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J Neurochem 75(2): 694–700.

    CAS  PubMed  Google Scholar 

  • Stewart VC, Heslegrave AJ, Brown GC, Clark JB, Heales SJ. 2002. Nitric oxide-dependent damage to neuronal mitochondria involves the NMDA receptor. Eur J Neurosci 15(3): 458–464.

    CAS  PubMed  Google Scholar 

  • Stout AK, Raphael HM, Kabterewucz BI, Klann E, Reynolds IJ. 1998. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neursci 1(5): 366–373.

    CAS  Google Scholar 

  • Sullivan PG, Thompson MB, Scheff SW. 1999b. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160: 226–34.

    CAS  Google Scholar 

  • Sullivan PG, Thompson MB, Scheff SW. 1999c. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160(1): 226–234.

    CAS  Google Scholar 

  • Sullivan PG, Thompson M, Scheff SW. 2000c. Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp Neurol 161(2): 631–637.

    CAS  Google Scholar 

  • Sullivan PG, Geiger JD, Mattson MP, Scheff SW. 2000a. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48(5): 723–729.

    CAS  Google Scholar 

  • Sullivan PG, Keller JN, Mattson MP, Scheff SW. 1998. Traumatic brain injury alters synaptic homeostasis: Implications for impaired mitochondrial and transport function. J Neurotrauma 15(10): 789–798.

    CAS  PubMed  Google Scholar 

  • Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, et al. 1999a. Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19(15): 6248–6256.

    CAS  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Hicks RR, Gibson TR, Fletcher-Turner A, et al. 2000b. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 101(2): 289–295.

    CAS  Google Scholar 

  • Taoka Y, Okajima K, Uchiba M, Johno M. 2001. Methylprednisolone reduces spinal cord injury in rats without affecting tumor necrosis factor-alpha production. J Neurotrauma 18(5): 533–543.

    CAS  PubMed  Google Scholar 

  • Valdez LB, Alvarez S, Arnaiz SL, Schopfer F, Carreras MC, et al. 2000. Reactions of peroxynitrite in the mitochondrial matrix. Free Radic Biol Med 29(3–4): 349–356.

    CAS  PubMed  Google Scholar 

  • Verweij BH, Muizelaar JP, Federico CV, Peterson PL, Xiong Y, et al. 1997. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111). Neurol Res 19(3): 334–339.

    CAS  PubMed  Google Scholar 

  • Wang GJ, Thayer SA. 1996. Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 76(3): 1611–1621.

    CAS  PubMed  Google Scholar 

  • Ward MW, Rego AC, Frenguelli BG, Nicholls DG. 2000. Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20(19): 7208–7219.

    CAS  PubMed  Google Scholar 

  • White RJ, Reynolds IJ. 1997. Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. J Physiol (Lond) 498(Pt 1): 31–47.

    CAS  Google Scholar 

  • Whiteman M, Halliwell B. 1997. Thiourea and dimethylthiourea inhibit peroxynitrite-dependent damage: Nonspecificity as hydroxyl radical scavengers. Free Radic Biol Med 22(7): 1309–1312.

    CAS  PubMed  Google Scholar 

  • Xiong Y, Rabchevsky AG, Hall ED. 2007. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100: 639-649.

    Google Scholar 

  • Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS. 2005. Prevention of mitochondrial dysfunction in posttraumatic mouse brain by superoxide dismutase. J Neurochem 95(3): 732–744.

    CAS  PubMed  Google Scholar 

  • Xu J, Qu ZX, Hogan EL, Perot PL, Jr. 1992. Protective effect of methylprednisolone on vascular injury in rat spinal cord injury. J Neurotrauma 9(3): 245–253.

    CAS  PubMed  Google Scholar 

  • Xu J, Gyeong-Moon K, Chen S, Yan P, Hinan A, et al. 2001a. iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma 18(5): 523–532.

    CAS  Google Scholar 

  • Xu J, Kim GM, Ahmed SH, Yan P, Xu XM, et al. 2001b. Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury. J Neurosci 21(1): 92–97.

    CAS  Google Scholar 

  • Young W, Flamm ES. 1982. Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57(5): 667–673.

    CAS  PubMed  Google Scholar 

  • Zaleska MM, Floyd RA. 1985. Regional lipid peroxidation in rat brain in vitro: Possible role of endogenous iron. Neurochem Res 10(3): 397–410.

    CAS  PubMed  Google Scholar 

  • Zanella B, Calonghi N, Pagnotta E, Masotti L, Guarnieri C. 2002. Mitochondrial nitric oxide localization in H9c2 cells revealed by confocal microscopy. Biochem Biophys Res Commun 290(3): 1010–1014.

    CAS  PubMed  Google Scholar 

  • Zhang JR, Andrus PK, Hall ED. 1993. Age-related regional changes in hydroxyl radical stress and antioxidants in gerbil brain. J Neurochem 61(5): 1640–1647.

    CAS  PubMed  Google Scholar 

  • Zhang H, Squadrito GL, Pryor WA. 1998a. The reaction of melatonin with peroxynitrite: Formation of melatonin radical cation and absence of stable nitrated products. Biochem Biophys Res Commun 251(1): 83–87.

    CAS  Google Scholar 

  • Zhang H, Squadrito GL, Uppu R, Pryor WA. 1999. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol 12(6): 526–534.

    CAS  PubMed  Google Scholar 

  • Zhang R, Shohami E, Beit-Yannai E, Bass R, Trembovler V, et al. 1998b. Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radic Biol Med 24(2): 332–340.

    CAS  Google Scholar 

  • Zhang R, Shohami E, Beit-Yannai E, Bass R, Trembovler V, et al. 1998c. Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radic Biol Med 24(2): 332–340.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hall, E.D. (2009). Free Radicals and Neuroprotection in Traumatic Brain and Spinal Cord Injury. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_10

Download citation

Publish with us

Policies and ethics