Skip to main content

Multiple Representation in Primate SI: A View from a Window on the Brain

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter summarizes recent findings regarding the functional organization of primary somatosensory cortex (SI) in primates when viewed through ‘windows’ on the brain with optical imaging methodologies. These views have confirmed previous knowledge regarding topographic organization in SI. They have also revealed the presence of functional domains for the processing of different sensory tactile modalities (pressure, flutter, and vibration domains). Surprisingly, the representation of these tactile modalities is quite distinct in organization from that of visual modalities (form, color, and depth) in visual cortex. Rather, tactile modality maps appear similar to visual orientation maps in primate visual cortex. Implications of these findings for the relationship of cortical organization to the sensory scene are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SI:

primary somatosensory cortex

SII:

second somatosensory area

PV:

parietal ventral area

SA:

slowly adapting

RA:

rapidly adapting

PC:

pacinian

VPL:

ventral posterior lateral

VPI:

ventroposterior inferior

CCD:

charge coupled device

V1:

primary visual cortex

V2:

second visual area

V4:

fourth visual area

IT:

inferotemporal cortex

References

  • Bakin JS, Kwon MC, Masino SA, Weinberger NM, Frostig RD. 1996. Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging. Cereb Cortex 6: 120–130.

    Article  CAS  PubMed  Google Scholar 

  • Bartfeld E, Grinvald A. 1992. Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc Natl Acad Sci USA 89(24): 11905–11909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake DT, Hsiao SS, Johnson KO. 1997. Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J Neurosci 17: 7480–7489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasdel GG, Salama G. 1986. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321: 579–585.

    Article  CAS  PubMed  Google Scholar 

  • Blasdel GG. 1992. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J Neurosci 12: 3115–3138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolanowski SJ Jr, Gescheider GA, Verrillo RT, Checkosky CM. 1988. Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84: 1680–1694.

    Article  PubMed  Google Scholar 

  • Bonhoeffer T, Grinvald A. 1991. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353: 429–431.

    Article  CAS  PubMed  Google Scholar 

  • Bonhoeffer T, Kim DS, Malonek D, Shoham D, Grinvald A. 1995. Optical imaging of the layout of functional domains in Area 17 and across the Area 17/18 border in cat visual cortex. Eur J Neurosci 7: 1973–1988.

    Article  CAS  PubMed  Google Scholar 

  • Bonhoeffer T, Grinvald A. 1996. Brain mapping: The methods. Toga AW, Mazziotta JC, editors. New York: Academic Press; pp. 55–97.

    Google Scholar 

  • Burton H, Fabri M. 1995. Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and 1 of macaque monkeys: Projections in the vicinity of the central sulcus. J Comp Neurol 355: 508–538.

    Article  CAS  PubMed  Google Scholar 

  • Burton H, Sinclair RJ, Hong SY, Pruett JR Jr, Whang KC. 1997. Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosens Mot Res 14(4): 237–267.

    Article  CAS  PubMed  Google Scholar 

  • Cannestra AF, Black KL, Martin NA, Cloughesy T, Burton JS, et al. 1998. Topographical and temporal specificity of human intraoperative optical intrinsic signals. Neuroreport 9: 2557–2563.

    Article  CAS  PubMed  Google Scholar 

  • Carlson M. 1981. Characteristics of sensory deficits following lesions of Brodmann's areas 1 and 2 in the postcentral gyrus of Macaca mulatta. Brain Res 204(2): 424–430.

    Article  CAS  PubMed  Google Scholar 

  • Carlson M. 1984. Development of tactile discrimination capacity in Macaca mulatta. II. Effects of partial removal of primary somatic sensory cortex (SmI) in infants and juveniles. Brain Res 318: 83–101.

    Article  CAS  PubMed  Google Scholar 

  • Chen LM, Friedman RM, Ramsden BM, La Motte RH, Roe AW. 2001. Fine-scale organization of primary somatosensory cortex (Area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86: 3011–3029.

    Article  CAS  PubMed  Google Scholar 

  • Chen LM, Heider B, Healy FL, Ramsden BR, Williams GV, et al. 2002. A chamber and artificial dura method for long-term optical imaging in primates. J Neurosci 113: 41–49.

    Google Scholar 

  • Chen LM, Friedman RM, Roe AW. 2005. Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J Neurosci 25(33): 7648-7659.

    Google Scholar 

  • Cohen RH, Vierck CJ. 1993. Population estimates for responses of cutaneous mechanoreceptors to a vertically indenting probe on the glabrous skin of monkeys. Exp Brain Res 94: 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Connor CE, Johnson KO. 1992. Neural coding of tactile texutre: Comparison of spatial and temporal mechanisms for roughness perception. J Neursoci 12: 3414–3426.

    Article  CAS  Google Scholar 

  • Costanzo RM, Gardner EP. 1980. A quantitative analysis of repsonses of direction sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43: 139–1341.

    Article  Google Scholar 

  • Craig AD. 2003. Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26: 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Cusick CG, Steindler DA, Kaas JH. 1985. Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: A double-labeling study with radiolabeled wheatgerm agglutinin and wheatgerm agglutinin conjugated to horseradish peroxidase. Somatosens Res 3: 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Debowy DJ, Ghosh S, Ro JY, Gardner EP. 2001. Comparison of neuronal firing rates in somatosensory and posterior parietal cortex during prehension. Exp Brain Res 137(3–4): 269–291.

    Article  CAS  PubMed  Google Scholar 

  • Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T. 1994. Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72(2): 542–564.

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME. 1998. Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. J Neurophysiol 79(1): 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Dykes RW, Sur M, Merzenich MM, Kaas JH, Nelson RJ. 1981. Regional segregation of neurons responding to quickly adapting, slowly adapting, deep and pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey (Saimiri sciureus). Neurosci 6: 1687–1692.

    Article  CAS  Google Scholar 

  • Felleman DJ, Xiao Y, McClendon E. 1997. Modular organization of occipito-temporal pathways: Cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys. J Neurosci 17(9): 3185–3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman RM, Chen LM, Roe AW. 2004. Modality maps within primate somatosensory cortex. Proc Natl Acad Sci USA 101: 12724–12729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garraghty PE, Pons TP, Sur M, Kaas JH. 1989. The arbors of axons terminating in middle cortical layers of somatosensory area 3b in owl monkeys. Somatosens Mot Res 6(4): 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Garraghty PE, Florence SL, Kaas J. 1990. Ablations of areas 3a and 3b of monkey somatosensory cortex abolish cutaneous responsivity in area 1. Brain Res 528: 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Gescheider GA, Frisina RD, Verrillo RT. 1979. Selective adaptation of vibrotactile thresholds. Sens Processes 3: 37–48.

    CAS  PubMed  Google Scholar 

  • Gescheider GA, Sklar BF, Van Doren CL, Verrillo RT. 1985. Vibrotactile forward masking: Psychophysical evidence for a triplex theory of cutaneous mechanoreception. J Acoust Soc Am 78(2): 534–543.

    Article  CAS  PubMed  Google Scholar 

  • Goldreich D, Peterson BE, Merzenich MM. 1998. Optical imaging and electrophysiology of rat barrel cortex. II. Responses to paired-vibrissa deflections. Cereb Cortex 8: 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Harel N, Mori N, Sawada S, Mount RJ, Harrison RV. 2000. Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11: 302–312.

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Harris IM, Diamond ME. 2001. The topography of tactile learning in humans. J Neurosci 21: 1056–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyvarinen J, Poranen A. 1978. Movement-sensitive and direction and orientation-selective cutaneous receptive fields in the hand area of the post-central gyrus in monkeys. J Physiol 283: 523–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa NP, Trepel C, Stryker MP. 2000. Spatial frequency maps in cat visual cortex. J Neurosci 20: 8504–8514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O. 1983. Converging patterns of finger representation and complex response properties of neurons in Area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51: 327–337.

    Google Scholar 

  • Johansson RS, Landstrom U, Lundstrom R. 1982. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res 244: 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS. 1969. Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral connections. Brain 92: 477–502.

    CAS  Google Scholar 

  • Jones EG, Coulter JD, Hendry SHC. 1978. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181: 291–347.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Friedman DP, Hendry SHC. 1982. Thalamic basis of place- and modality-specific columns in monkey somatosensory cortex: A correlative anatomical and physiological study. J Neurophysiol 48: 545–568.

    Article  CAS  PubMed  Google Scholar 

  • Juliano SL, Whitsel BL. 1987. A combined 2-deoxyglucose and neurophysiological study of primate somatosensory cortex. J Comp Neurol 263: 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Juliano SL, Hand PF, Whitsel BL. 1981. Patterns of increased metabolic activity in somatosensory cortex of monkeys Macaca fascicularis, subjected to controlled cutaneous stimulation: A 2-deoxyglucose study. J Neurophysiol 46: 1260–1284.

    Article  CAS  PubMed  Google Scholar 

  • Juliano SL, Friedman DP, Eslin DE. 1990. Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. J Comp Neurol 298: 23–39.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM. 1979. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204: 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS. 1995. Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359: 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M. 1995. A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821–3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Motte RH, Mountcastle VB. 1975. Capacities of humans and monkeys to discriminate vibratory stimuli of different frequency and amplitude: A correlation between neural events and psychological measurements. J Neurophysiol 38: 539–559.

    Article  CAS  Google Scholar 

  • Malach R, Tootell RBH, Malonek D. 1994. Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. Cereb Cortex 4: 151–165.

    Article  CAS  PubMed  Google Scholar 

  • Masino SA, Kwon MC, Dory Y, Frostig RD. 1993. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc Natl Acad Sci USA 1993 Nov 1; 90(21): 9998-10002.

    Google Scholar 

  • Masino SA, Frostig RD. 1996. Quantitative long-term imaging of the functional representation of a whicker in rat barrel cortex. Proc Natl Acad Sci USA 93: 4942–4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, et al. 1987. Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258: 281–296.

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle VB, Powell TPS. 1959. Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull Johns Hopkins Hosp 105: 201–232.

    CAS  PubMed  Google Scholar 

  • Mountcastle VB, La Motte RH, Carli G. 1972. Detection thresholds for stimuli in humans and monkeys: Comparison with threshold events in mechanoreceptive afferent nerve fibers innervating the monkey hand. J Neurophysiol 35: 122–136.

    Article  CAS  PubMed  Google Scholar 

  • Murray EA, Mishkin M. 1984. Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11: 67–83.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Sur M, Felleman DJ, Kaas JH. 1980. Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J Comp Neurol 192(4): 611–643.

    Article  CAS  PubMed  Google Scholar 

  • Nelson RJ, Smith BN, Douglas VD. 1991. Relationships between sensory responsiveness and premovement activity of quickly adapting neurons in areas 3b and 1 of monkey primary somatosensory cortex. Exp Brain Res 84: 75–90.

    Article  CAS  PubMed  Google Scholar 

  • Obermayer K, Blasdel GG. 1997. Singularities in primate orientation maps. Neural Comput 9: 555–575.

    Article  CAS  PubMed  Google Scholar 

  • Paul RL, Merzenich M, Goodman H. 1972. Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann's areas 3 and 1 of Macaca mulatta. Brain Res 36: 229–249.

    Article  CAS  PubMed  Google Scholar 

  • Polimeni JR, Granquist-Fraser D, Wood RJ, Schwartz EL. 2005. Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns. Proc Natl Acad Sci USA 102(11): 4158–4163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons TP, Garraghty PE, Cusick CG, Kaas JH. 1985. A sequential representation of the occiput, arm, forearm and hand across the rostrocaudal dimension of areas 1, 2 and 5 in macaque monkeys. Brain Res 335(2): 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Pons TP, Wall JT, Garraghty PE, Cusick CG, Kaas JH. 1987. Consistent features of the representation of the hand in area 3b of macaque monkeys. Somatosens Res 4: 309–331.

    Article  CAS  PubMed  Google Scholar 

  • Powell TP, Mountacstle VB. 1959. The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta. Bull Johns Hopkins Hosp 105: 108–131.

    CAS  PubMed  Google Scholar 

  • Rao SC, Toth LJ, Sur M. 1997. Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. J Comp Neurol 87: 358–370.

    Google Scholar 

  • Robinson CJ, Burton H. 1980. Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192(1): 69–92.

    Article  CAS  PubMed  Google Scholar 

  • Robinson CJ, Burton H. 1980b. Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 192(1): 93-108.

    Google Scholar 

  • Roe AW, Ts'o DY. 1995. Visual topography in primate V2: multiple representation across functional stripes. J Neurosci 15: 3689–3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roe AW, Ts'o DY. 1999. Specificity of color connectivity between primate V1 and V2. J Neurophysiol 82(5): 2719-2730.

    Google Scholar 

  • Roe AW. 2003. Modular complexity of area V2 in the Macaque monkey. The primate visual system. Collins C, Kaas J, editors. New York : CRC Press; pp. 109–138.

    Google Scholar 

  • Roe AW, Fritsches K, Pettigrew JD. 2005. Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. Anat Rec A Discov Mol Cell Evol Biol 287(2): 1213-25.

    Google Scholar 

  • Romo R, Hernandez A, Zainos A, Salinas E. 1998. Somatosensory discrimination based on cortical microstimulation. Nature 392: 387–390.

    Article  CAS  PubMed  Google Scholar 

  • Romo R, Hernandez A, Zainos A, Brody CD, Lemus L. 2000. Sensing without touching: Psychophysical performance based on cortical microstimulation. Neuron 26: 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Schneider RJ, Friedman DP, Mishkin M. 1993. A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res 621(1): 116–120.

    Article  CAS  PubMed  Google Scholar 

  • Schummers J, Marino J, Sur M. 2002. Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36(5): 969–978.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz TH, Chen LM, Friedman RM, Spencer DD, Roe AW. 2004. Intraoperative optical imaging of face topography in human somatosensory cortex. Neuroreport 15: 1527–1532.

    Article  PubMed  Google Scholar 

  • Sheth BR, Moore CI, Sur M. 1998. Temporal modulation of spatial borders in rat barrel cortex. J Neurophysiol 79: 464–470.

    Article  CAS  PubMed  Google Scholar 

  • Shoham D, Grinvald A. 2001. The cortical representation of the hand in macaque and human Area S-I: High resolution optical imaging. J Neurosci 21: 6820–6835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RM, Raffi M, Phinney RE, Turner JA, Jando G. 2003. Functional architecture of eye position gain fields in visual association cortex of behaving monkey. J Neurophysiol 90(2): 1279–1294.

    Article  PubMed  Google Scholar 

  • Spitzer MW, Calford MB, Clarey JC, Pettigrew JD, Roe AW. 2001. Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat. J Neurophysiol 85: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  • Sretavan D, Dykes RW. 1983. The organization of two cutaneous submodalities in the forearm region of area 3b of cat somatosensory cortex. J Comp Neurol 213: 381–398.

    Article  CAS  PubMed  Google Scholar 

  • Sur M. 1980. Receptive fields of neurons in Areas 3b and 1 of somatosensory cortex in monkeys. Brain Res 198: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Merzenich MM, Kaas JH. 1980. Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44: 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Nelson RJ, Kaas JH. 1982. Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates. J Comp Neurol 211: 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Garraghty PE, Bruce C. 1985. Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and 1. Brain Res 342: 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Wall JT, Kaas JH. 1981. Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212: 1059–1061.

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Wall JT, Kaas JH. 1984. Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51: 724–744.

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV. 2000. How many maps are there in visual cortex? Cereb Cortex 10: 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB. 1968. The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31: 301–334.

    Article  CAS  PubMed  Google Scholar 

  • Tanji J, Wise SP. 1981. Submodality distribution in sensorimotor cortex of the unanesthetized monkey. J Neurophysiol 45: 467–481.

    Article  CAS  PubMed  Google Scholar 

  • Tommerdahl M, Delemos KA, Vierck CJ, Favorov OV, Whitsel BL. 1996. Anterior parietal cortical response to tactile and skin-heating stimuli applied to the same skin site. J Neurophysiol 75: 2662–2670.

    Article  CAS  PubMed  Google Scholar 

  • Tommerdahl M, Delemos KA, Favorov OV, Metz CB, Vierck CJ, et al. 1998. Response of anterior parietal cortex to different modes of same-site skin stimulation. J Neurophysiol 80: 3272–3283.

    Article  CAS  PubMed  Google Scholar 

  • Tommerdahl M, Delemos KA, Whitsel BL, Favorov OV, Metz CB. 1999. Response of anterior parietal cortex to cutaneous flutter versus vibration. J Neurophysiol 82: 16–33.

    Article  CAS  PubMed  Google Scholar 

  • Tommerdahl M, Favorov O, Whitsel BL. 2002. Optical imaging of intrinsic signals in somatosensory cortex. Behav Brain Res 135: 83–91.

    Article  PubMed  Google Scholar 

  • Torebjork HE, Ochoa JL. 1980. Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol Scand 110: 445–447.

    Article  CAS  PubMed  Google Scholar 

  • Ts'o DY, Frostig RD, Lieke EE, Grinvald A. 1990. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249: 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. 2001. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8): 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Vallbo AB. 1981. Sensations evoked from the glabrous skin of the human hand by electrical stimulation of unitary mechanosensitive afferents. Brain Res 215(1-2): 359-363.

    Google Scholar 

  • Vallbo AB, Johansson RS. 1984. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1): 3–14.

    CAS  PubMed  Google Scholar 

  • Verrillo RT. 1966. Vibrotactile thresholds for hairy skin. J Exp Psychol 72(1): 47–50.

    Article  CAS  PubMed  Google Scholar 

  • Warren S, Hamalainen HA, Gardner EP. 1986. Objective classification of motion- and direction-sensitive neurons in primary somatosensory cortex of awake monkeys. J Neurophysiol 56(3): 598–622.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN, Marshall WH, Bard P. 1942. Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Bull Johns Hopkins Hosp 70: 399–441.

    Google Scholar 

  • Xu X, Bosking W, Sary G, Stefansic J, Shima D, et al. 2004. Functional organization of visual cortex in the owl monkey. J Neurosci 24(28): 6237–6247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Roe, A.W., Friedman, R.M., Chen, L.M. (2007). Multiple Representation in Primate SI: A View from a Window on the Brain. In: Lajtha, A., Johnson, D.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30374-1_1

Download citation

Publish with us

Policies and ethics