Skip to main content
  • 1319 Accesses

Abstract

Voltage-gated calcium channels (VGCCs) are membrane proteins and mediate Ca2+ influx in response to membrane depolarization to evoke a wide spectrum of cellular responses, which include neurotransmitter release and activation of Ca2+-dependent enzymes. Molecularly, VGCCs are composed of multiple subunits, and their channel properties are primarily determined by the α1 subunits, which form the channel pore and various binding sites for associated proteins and drugs. There are ten genes encoding the α1 subunits. CaV2.1 (P/Q type) and CaV2.2 (N-type) are two major VGCCs in the brain, and are involved in neurotransmitter release. Recent studies revealed differences between them, for example in G-protein mediated modulation and in developmental changes. CaV1 (L-type) VGCCs are involved also in inducing changes in gene expression. CaV3 (T-type) VGCCs activate at subthreshold potentials, and for example play an important role in generating rhythmic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

α1 interacting domain

CCAT:

channel-associated transcriptional regulator

cDNA:

complementary DNA

CGRP:

calcitonin gene-related peptide

ChIs:

cholinergic interneurons

GID:

G-protein interaction domain

HVA:

high-voltage activated

LVA:

low-voltage activated

MSNs:

medium spiny neurons

NALCN:

sodium leak channel

NSCaTE:

N-terminal spatial Ca2+ transforming element

PKC:

protein kinase C

RIM1:

Rab3-interacting molecule 1

TARP:

transmembrane AMPA receptor regulatory protein

VGCC:

voltage-gated calcium channels

References

  • Ahlijanian MK, Ruth E, Westenbroek RE, Catterall WA. 1990. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 4: 819–832.

    Article  PubMed  CAS  Google Scholar 

  • Almers W, McCleskey EW. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J Physiol 353: 585–608.

    PubMed  CAS  Google Scholar 

  • Andrade A, Sandoval A, Oviedo N, DeWaard M, Elias D, et al. 2007. Proteolytic cleavage of the voltage-gated Ca2+ channel α2δ subunit: Structural and functional features. Eur J Neurosci 25: 1705–1710.

    Article  PubMed  Google Scholar 

  • Aosaki T, Kasai H. 1989. Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and ω-conotoxin GVIA. Pflügers Arch 414: 150–156.

    Article  PubMed  CAS  Google Scholar 

  • Bading H, Ginty DD, Greenberg ME. 1993. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260: 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Bean BP. 1989. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Bean BP. 2007. The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465.

    Article  PubMed  CAS  Google Scholar 

  • Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, et al. 1998. Loss of function mutations in a calcium-channel alpha-1 subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, et al. 2006. BKCa-CaV channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314: 615–620.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW. 1995. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378: 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Bichet D, Cornet V, Geib S, Carlier E, Volsen S, et al. 2000. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25: 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, et al. 1999. Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2: 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D. 2003. α1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci USA 100: 12450–12455.

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD. 1984. A low voltage-activated, fully inactivating Calcium channel in vertebrate sensory neurones. Nature 310: 501–502.

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. 2005. International Union of Pharmacology. XLVIII. nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57: 411–425.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, et al. 2000. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408: 936–943.

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Ren YQ, Bing R, Hillman, DE. 2000. Alpha-1E subunit of the R-type calcium channel is associated with myelinogenesis. J Neurocytol 29: 719–728.

    Article  PubMed  CAS  Google Scholar 

  • Chuang RSI, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ. 1998. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1: 668–674.

    Article  PubMed  CAS  Google Scholar 

  • D'Ascenzo M, Vairano M, Andreassi C, Navarra P, Azzena GB, et al. 2003. Electrophysiological and molecular evidence of L- (CaV1), N- (CaV2.2), and R- (CaV2.3) type Ca2+ channels in rat cortical astrocytes. Glia 45: 354–363.

    Article  Google Scholar 

  • Davies A, Hendrich J, VanMinh AT, Wratten J, Douglas L, et al. 2007. Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28: 220–228.

    Article  PubMed  CAS  Google Scholar 

  • De Jongh KS, Warner C, Catterall WA. 1990. Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J Biol Chem 265: 14738–14741.

    PubMed  CAS  Google Scholar 

  • De Waard M, Hering J, Neiss N, Feltz A. 2005. How do G proteins directly control neuronal Ca2+ channel function? Trends Pharmacol Sci 26: 427–436.

    CAS  Google Scholar 

  • Dick IE, Tadross MR, Liang H, Tay LH, Yang W, et al. 2008. A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451: 830–834.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich D, Kirschstein T, Kukley M, Pereverzev A, VonDerBrelie, et al. 2003. Functional specialization of presynaptic CaV2.3 Ca2+ channels. Neuron 39: 483–496.

    Article  PubMed  CAS  Google Scholar 

  • Dodge FA Jr, Rahamimoff R. 1967. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol 193: 419–432.

    PubMed  CAS  Google Scholar 

  • Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME. 2001. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294: 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC. 2003. β subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35: 599–620.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD. 1981. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol 317: 519–535.

    PubMed  CAS  Google Scholar 

  • Eckert R, Chad JE. 1984. Inactivation of Ca channels. Prog Biophys Mol Biol 44: 215–267.

    Article  PubMed  CAS  Google Scholar 

  • Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, et al. 1993. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, et al. 1988. Sequence and expression of mRNAs encoding the α, and α2 subunits of a DHP-sensitive calcium channel. Science 241: 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  • Elmslie KS, Zhou W, Jones SW. 1990. LHRH and GTP-γ-S modify calcium current activation in bullfrog sympathetic neurons. Neuron 5: 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, et al. 2000. Nomenclature of voltage-gated calcium channels. Neuron 25: 533–535.

    Article  PubMed  CAS  Google Scholar 

  • Fatt P, Ginsbor BL. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol 142: 516–543.

    PubMed  CAS  Google Scholar 

  • Fletcher CF, Lutz CM, OSullivan, TN, Shaughnessy JD Jr, Hawkes R, et al. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87: 607–617.

    Article  PubMed  CAS  Google Scholar 

  • Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, et al. 2000. Absence of the γ subunit of the skeletal muscle dihydropyridine receptor increased L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem 275: 14476–14481.

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Kameyama K, Hosono M, Hayashi Y, Kitamura, K. 1997. Effect of cilnidipine, a novel dihydropyridine Ca2+-channel antagonist, on N-type Ca2+ channel in rat dorsal root ganglion neurons. J Pharmacol Exp Ther 280: 1184–1191.

    PubMed  CAS  Google Scholar 

  • Fujita Y, Mynlieff M, Dirksen RT, Kim MS, Niidome T, et al. 1993. Primary structure and functional expression of the ω-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 10: 585–598.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R. 2006. The C-terminus of the L-type voltage-gated calcium channel CaV1.2 encodes a transcription factor. Cell 127: 591–606.

    Article  PubMed  CAS  Google Scholar 

  • Grabsch H, Pereverzev A, Weiergraber M, Schramm M, Henry M, et al. 1999. Immunohistochemical detection of alpha-1E voltage-gated Ca2+ channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 47: 981–994.

    PubMed  CAS  Google Scholar 

  • Green EM, Barrett CF, Bultynck G, Shamah SM, Dolmetsch RE. 2007. The tumor suppressor elF3e mediates calcium-dependent internalization of the L-type calcium channel CaV1.2. Neuron 55: 615–632.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Byerly L. 1981. Calcium channel. Annu Rev Neurosci 4: 69–125.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Ozawa S, Sand O. 1975. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65: 617–644.

    Article  PubMed  CAS  Google Scholar 

  • Hanlon MR, Berrow NS, Dolphin AC, Wallace BA. 1999. Modelling of a voltage-dependent Ca2+ channel β subunit as a basis for understanding its functional properties. FEBS Lett 445: 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Hansen JP, Chen RS, Larsen JK, Chu PJ, Janes DM., et al. 2004. Calcium channel γ6 subunits are unique modulators of low voltage-activated (CaV3.1) calcium current. J Mol Cell Caradiol 37: 1147–1158.

    Article  CAS  Google Scholar 

  • Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, et al. 2001. Differential nociceptive responses in mice lacking the α1B subunit of N-type Ca2+ channels. Neuroreport 12: 2423–2427.

    Article  PubMed  CAS  Google Scholar 

  • Hefft S, Jonas, P. 2005. Asynchronous GABA release generate long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci 8: 1319–1328.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann SH, Terlau H, Stühmer W, Imoto K, Numa S. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356: 441–443.

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, et al. 1996. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380: 258–262.

    Article  PubMed  CAS  Google Scholar 

  • Hess P, Tsien RW. 1984. Mechanism of ion permeation through calcium channels. Nature 309: 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo P, Neely A. 2007. Multiplicity of protein interactions and functions of the voltage-gated calcium channel β-subunit. Cell calcium 42: 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand M, David LS, Hamid J, Mulatz K, Garcia E, et al. 2007. Selective inhibition of CaV3.3 T-type calcium channels by Gαq/11-coupled muscarinic acetylcholine receptors. J Biol Chem 282: 21043–21055.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. 2001. Ion channels of excitable membranes, 3rd edition. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hille B. 1994. Modulation of ion-channel function by G-protein-coupled receptors. Trends in Neurosci 17: 531–536.

    Article  CAS  Google Scholar 

  • Holz GGT, Dunlap K, Kream RM. 1988. Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: Methods and dihydropyridine sensitivity. J Neurosci 8: 463–471.

    PubMed  CAS  Google Scholar 

  • Iftinca M, Hamid J, Chen L, Varela D, Tadayonnejad R, et al. 2007. Regulation of T-type calcium channels by Rho-associated kinase. Nat Neurosci 10: 854–860.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR. 1996. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Ino M, Yoshinaga T, Wakamori M, Miyamoto N, Takahashi E, et al. 2001. Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (CaV 2.2) of N-type calcium channels. Proc Natl Acad Sci USA 98: 5323–5328.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD., Takahashi T. 2000. Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20: 59–65.

    PubMed  CAS  Google Scholar 

  • Iwasaki S, Takahashi T. 1998. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Jahnsen H, Llinás R. 1984. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349: 227–427.

    PubMed  CAS  Google Scholar 

  • Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, et al. 2005. CaV2.3 calcium channels control second-phase insulin release. J Clin Invest 115: 146–154.

    PubMed  CAS  Google Scholar 

  • Jones SW, Marks TN. 1989. Calcium currents in bullfrog sympathetic neurons. II. Inactivation J Gen Physiol 94: 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Jun K, Piedras-Rentería ES, Smith SM, Wheeler DB, Lee, SB, et al. 1999. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A subunit. Proc Natl Acad Sci USA 96: 15245–15250.

    Article  PubMed  CAS  Google Scholar 

  • Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, et al. 2006. A molecular determinant of nickel inhibition in CaV3.2 T-type calcium channels. J Biol Chem 281: 4823–4830.

    Article  PubMed  CAS  Google Scholar 

  • Kerr LM, Filloux F, Olivera BM, Jackson H, Wamsley JK. 1988. Autoradiographic localization of calcium channels with [125I]ω-conotoxin in rat brain. Eur J Pharmacol 146: 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Morii T, Sun LX, Imoto K, Mori Y. 1993. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett 318: 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, et al. 2007. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10: 691–701.

    Article  PubMed  CAS  Google Scholar 

  • Klöckner U, Lee JH, Cribbs LL, Daud A, Hescheler J, et al. 1999. Comparison of the Ca2+ currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11: 4171–4178.

    Article  PubMed  Google Scholar 

  • Klöckner U, Pereverzev A, Leroy J, Krieger A, Vajna R, et al. 2004. The cytosolic II-III loop of CaV2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci 19: 2659–2668.

    Article  PubMed  Google Scholar 

  • Konda T, Enomoto A, Matsushita J, Takahara A, Moriyama T. 2005. The N- and L-type calcium channel blocker cilnidipine suppresses renal injury in dahl rats fed a high-sucrose diet, an experimental model of metabolic syndrome. Nephron Physiol 101: 1–13.

    Article  CAS  Google Scholar 

  • Kubota M, Murakoshi T, Saegusa H, Kazuno A, Zong S, et al. 2001. Intact LTP and fear memory but impaired spatial memory in mice lacking Cav2.3 (α1E) channel. Biochem Biophys Res Commun 282: 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Luján R, et al. 2004. Immunocytochemical localization of the α1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur J Neurosci 19: 2169–2178.

    Article  PubMed  Google Scholar 

  • Kuzmiski JB, Barr W, Zamponi GW, Macvicar BA. 2005. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia 46: 481–489.

    Article  PubMed  CAS  Google Scholar 

  • Larkum ME, Kaiser MM, Sakmann B. 1999. Calcium electrogenesis in distal apical dendrites of layer five pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96: 14600–14604.

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Cribbs LL, Perez-Reyes E. 1999. Cloning of a novel four repeat protein related to voltage-gated sodium and calcium channels. FEBS Lett 445: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Choi S, Lee T, Kim HL, Chin H, et al. 2002. Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc Natl Acad Sci USA 99: 3276–3281.

    Article  PubMed  CAS  Google Scholar 

  • Leroy J, Pereverzev A, Vajna R, Qin N, Pfitzer G, et al. 2003. Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine-rich region in the cytosolic II-III loop. Eur J Neurosci 18: 841–855.

    Article  PubMed  Google Scholar 

  • Letts VA, Felix R, Biddlecome GH, Arikkath J, Mahaffey CL, et al. 1998. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nat Genetics 19: 340–347.

    Article  CAS  Google Scholar 

  • Liang, H, Demaria CD, Erickson MG, Mori MX, Alseikhan BA, et al. 2003. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39: 951–960.

    Article  PubMed  CAS  Google Scholar 

  • Llinás R, Sugimori M, Lin JW, Cherksey B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA 86: 1689–1693.

    Article  PubMed  Google Scholar 

  • Lu B, Su Y, Das S, Liu J, Xia J, et al. 2007. The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Lu ZJ, Pereverzev A, Liu HL, Weiergraber M, Henry M, et al. 2004. Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (α1E) subunit of voltage-gated Ca2+ channels. Cell Physiol Biochem 14: 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Tramontana M, Cecconi R, Santicioli P. 1990. Neurochemical evidence for the involvement of N-type calcium channels in transmitter secretion from peripheral endings of sensory nerves in guinea pigs. Neurosci Lett 114: 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Markrum H, Helm PJ, Sakmann, B. 1995. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J Physiol 485: 1–20.

    Google Scholar 

  • Martella G, Spadoni F, Sciamanna G, Tassone A, Bernardi G, et al. 2008. Age-related functional changes of high-voltage-activated calcium channels in different neuronal subtypes of mouse striatum. Neurosci 152: 469–476.

    CAS  Google Scholar 

  • Melzer W, Andronache Z, Urse D. 2006. Functional roles of the gamma subunit of the skeletal muscle DHP-receptor. J Muscle Res Cell Motil 27: 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Metz AE, Jarsky T, Martina M, Spruston N. 2005. R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. J Neurosci 25: 5763–5773.

    Article  PubMed  CAS  Google Scholar 

  • Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, et al. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355: 827–829.

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, et al. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350: 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, et al. 2000. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tgrol). J Neurosci 20: 5654–5662.

    PubMed  CAS  Google Scholar 

  • Moss FJ, Viard P, Davies A, Bertaso F, Page KM., et al. 2002. The novel product of five-exon stargazin-related gene abolishes CaV2.2calcium channel expression. EMBO J 21: 1514–1523.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb R, Szoke B, Palma A, Wang G, Chen X, et al. 1998. Selective peptide antagonist of the class-E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochem 37: 15353–15362.

    Article  CAS  Google Scholar 

  • Nilius B, Talavera K, Verkhratsky A. 2006. T-type calcium channels: The never ending story. Cell calcium 40: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Noebels JL, Sidman, RL. 1979. Inherited epilepsy: Spike-wave and focal motor seizures in the mutant mouse tottering. Science 204: 1334–1336.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW. 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443

    Article  PubMed  CAS  Google Scholar 

  • Oliveria SF, DellAcqua ML, Sather WA. 2007. AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55: 261–275.

    Article  PubMed  CAS  Google Scholar 

  • Opatowsky Y, Che CC, Campbell KP, Hirsch JA. 2004. Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α1 interaction domain. Neuron 42: 387–399.

    Article  PubMed  CAS  Google Scholar 

  • Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, et al. 2002. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Cav2.3 (α1E) subunit of voltage-gated Ca2+ channels. Mol Endocrinol 16: 884–895.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E. 2006. Molecular characterization of T-type calcium channels. Cell calcium 40: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, et al. 1998. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391: 896–900.

    Article  PubMed  CAS  Google Scholar 

  • Plummer MR, Hess, P. 1991. Reversible uncoupling of inactivation in N-type calcium channels. Nature 351: 657–659.

    Article  PubMed  CAS  Google Scholar 

  • Poncer JC, McKinney RA, Gähwiler BH, Thompson SM. 1997. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Puopolo M, Raviola E, Bean BP. 2007. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27: 645–656.

    Article  PubMed  CAS  Google Scholar 

  • Raingo J, Castiglioni AJ, Lipscombe D. 2007. Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10: 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Randall A, Tsien, RW. 1995. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15: 2995–3012.

    PubMed  CAS  Google Scholar 

  • Reid CA, Bekkers JM, Clements JD. 2003. Presynaptic Ca2+ channels: A functional patchwork. Trends Neurosci 26: 683–687.

    Article  PubMed  CAS  Google Scholar 

  • Rosato Siri MD, Uchitel OD. 1999. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. J Physiol 514: 533–540.

    Article  PubMed  Google Scholar 

  • Sabatini BL, Svoboda K. 2000. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Minowa O, Kazuno A, et al. 2000. Altered pain responses in mice lacking alpha 1E subunit of the voltage- dependent Ca2+ channel. Proc Natl Acad Sci USA 97: 6132–6137.

    Article  PubMed  CAS  Google Scholar 

  • Santicioli P, Del Bianco E, Tramontana M, Geppetti P, Maggi CA. 1992. Release of calcitonin gene-related peptide like-immunoreactivity induced by electrical field stimulation from rat spinal afferents is mediated by conotoxin-sensitive calcium channels. Neurosci Lett 136: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Scroggs RS, Fox AP. 1991. Distribution of dihydropyridine and ω-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: Diameter-dependent L channel expression in frog. J Neurosci 11: 1334–1346.

    PubMed  CAS  Google Scholar 

  • Sidach SS, Mintz IM. 2002. Kurtoxin, a gating modifier of neuronal high- and low-threshold Ca channels. J Neurosci 22: 2023–2034.

    PubMed  CAS  Google Scholar 

  • Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, et al. 1993. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260: 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  • Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, et al. 1994. Localization and functional properties of a rat brain α1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci USA 91: 10576–10580.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84: 5478–5482.

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, et al. 1999. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19: 1895–1911.

    PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, et al. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Toriyama H, Wang L, Saegusa H, Zong S, Osanai M, et al. 2002. Role of Cav 2.3 (α1E) Ca2+ channel in ischemic neuronal injury. Neuroreport 13: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T. 2002. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295: 2276–2279.

    Article  PubMed  CAS  Google Scholar 

  • Tunemi T, Saegusa H, Ishikawa K, Nagayama S, Murakoshi T., et al. 2002. Novel CaV2.1 splice variants isolated from Purkinje cells do not generate P-type Ca2+ current. J Biol Chem 277: 7214–7221.

    Article  CAS  Google Scholar 

  • Uchitel OD, Protti DA, Sanchez V, Cherksey BD, Sugimori M, et al. 1992. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 89: 3330–3333.

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible H. 2000. Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Vendel AC, Rithner CD, Lyons BA, Horne WA. 2006. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+ channel β4a subunit. Protein Sci 15: 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Wakamori M, Niidome T, Furutama D, Furuichi T, Mikoshiba K, et al. 1994. Distinctive functional properties of the neuronal BII (class E) calcium channel. Receptors Channels 2: 303–314.

    PubMed  CAS  Google Scholar 

  • Wakamori M, Yamazaki K, Matsunodaira H, Teramoto T, Tanaka I, et al. 1998. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273: 34857–34867.

    Article  PubMed  CAS  Google Scholar 

  • Weiergraber M, Henry M, Krieger A, Kamp M, Radhakrishnan K, et al. 2006. Altered seizure susceptibility in mice lacking the Cav2.3 E-type Ca2+ channel. Epilepsia 47: 839–850.

    Article  PubMed  Google Scholar 

  • Weiergraber M, Henry M, Sudkamp M, DeVivie ER, Hescheler J, et al. 2005. Ablation of Cav2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 100: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Weiss N, Arnoult C, DeWaard M. 2006. Contribution of the kinetics of G protein dissociation to the characteristic modifications of N-type calcium channel activity. Neurosci Res 56: 332–343.

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Babcock DF. 1999. Discrete regional distributions suggest diverse functional roles of calcium channel alpha1 subunits in sperm. Dev Biol 207: 457–469.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DB, Randall A, Tsien RW. 1994. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Wilson SM, Toth PT, Oh SB, Gillard SE, Volsen S, et al. 2000. The status of voltage-dependent calcium channel in α1E knock-out mice. J Neurosci 20: 8566–8571.

    PubMed  CAS  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B. 1999. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19: 726–736.

    PubMed  CAS  Google Scholar 

  • Xu J, Clancy CE. 2008. Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: A model study. PloS ONE 3: e2056.

    Article  PubMed  CAS  Google Scholar 

  • Zaitsev AV, Povysheva DA, Lewis DA., Krimer LS. 2007. P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. J Neurophysiol 97: 3567–3573.

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Yokoyama CT, Scheuer T, Catterall WA. 1999. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2: 939–941.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wakamori, M., Imoto, K. (2009). Voltage-Gated Calcium Channels. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_29

Download citation

Publish with us

Policies and ethics