Skip to main content

Calreticulin-Dependent Signaling During Embryonic Development

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology
  • 1313 Accesses

Abstract

Ca2+ ions are signaling molecules responsible for controlling developmental processes, including fertilization, differentiation, proliferation, and transcription factor activation. Various cellular functions are regulated by changes in cytoplasmic Ca2+, including gene transcription and expression, protein synthesis, modification, folding and secretion, cell motility, cytoplasmic and mitochondrial energy metabolism, cell cycle progression, and apoptosis. Endoplasmic reticulum is an important Ca2+ storage organelle involved in virtually every aspect of Ca2+ homeostasis. Endoplasmic reticulum luminal Ca2+-binding chaperones such as calreticulin are critical for buffering endoplasmic reticulum Ca2+. In mice, calreticulin deficiency is lethal in utero because of the compromised Ca2+ storage capacity in the endoplasmic reticulum and disrupted InsP3 receptor-mediated Ca2+ release. A disturbance in Ca2+ release results in impaired cardiac development due to inhibited Ca2+-dependent transcriptional pathways. Calreticulin and the endoplasmic reticulum are the key upstream elements for calcineurin in Ca2+-signaling pathways. In contrast upregulation of calreticulin and overloading endoplasmic reticulum with Ca2+ leads to cardiac arrhythmias and impaired development of the cardiac conductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAG:

diacylglycerol

HDAC:

histone deacetylases

LRP1/CD91:

LDL-receptor related protein

MEF2C:

myocyte enhancer factor 2C

NF-AT:

nuclear factor of activated T-cells

SERCA:

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase

References

  • Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, et al. 2002. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277: 46696–46705.

    Article  CAS  PubMed  Google Scholar 

  • Backs J, Olson EN. 2006. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98: 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Burns K, Busaan J, Michalak M. 1992. Expression and purification of recombinant and native calreticulin. Protein Expr Purif 3: 322–331.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Shin DW, Kim DH. 2000. Regulation of ATP-induced calcium release in COS-7 cells by calcineurin. Biochem J 348: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517–529.

    Article  CAS  PubMed  Google Scholar 

  • Black BL, Olson EN. 1998. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14: 167–196.

    Article  CAS  PubMed  Google Scholar 

  • Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, et al. 1994. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367: 476–480.

    Article  CAS  PubMed  Google Scholar 

  • Camacho P, Lechleiter JD. 1995. Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82: 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree GR. 2001. Calcium, calcineurin, and the control of transcription. J Biol Chem 276: 2313–2316.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree GR, Olson EN. 2002. NFAT signaling: Choreographing the social lives of cells. Cell 109 Suppl: S67–S79.

    Article  CAS  PubMed  Google Scholar 

  • delaPompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, et al. 1998. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392: 182–186.

    Article  CAS  Google Scholar 

  • Eckner R, Yao TP, Oldread E, Livingston DM. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev 10: 2478–2490.

    Article  CAS  PubMed  Google Scholar 

  • Eggleton P, Llewellyn DH. 1999. Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol 49: 466–473.

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard L, Frickel EM. 2003. Calnexin, calreticulin, and ERp57: Teammates in glycoprotein folding. Cell Biochem Biophys 39: 223–247.

    Article  CAS  PubMed  Google Scholar 

  • Elton CM, Smethurst PA, Eggleton P, Farndale RW. 2002. Physical and functional interaction between cell-surface calreticulin and the collagen receptors integrin alpha2beta1 and glycoprotein VI in human platelets. Thromb Haemost 88: 648–654.

    CAS  PubMed  Google Scholar 

  • Fadel MP, Dziak E, Lo CM, Ferrier J, Mesaeli N, et al. 1999. Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem 274: 15085–15094.

    Article  CAS  PubMed  Google Scholar 

  • Forslow A, Liu Z, Sundqvist KG. 2007. Receptor communication within the lymphocyte plasma membrane: A role for the thrombospondin family of matricellular proteins. Cell Mol Life Sci 64: 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Frey N, McKinsey TA, Olson EN. 2000. Decoding calcium signals involved in cardiac growth and function. Nat Med 6: 1221–1227.

    Article  CAS  PubMed  Google Scholar 

  • Frey N, Olson EN. 2003. Cardiac hypertrophy: The good, the bad, and the ugly. Annu Rev Physiol 65: 45–79.

    Article  CAS  PubMed  Google Scholar 

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, et al. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123: 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. 2000. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 275: 36358–36368.

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea S, Pallero MA, Eggleton P, Michalak M, Murphy-Ullrich JE. 2002. The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem 277: 37219–37228.

    Article  CAS  PubMed  Google Scholar 

  • Griffith LC. 2004. Calcium/calmodulin-dependent protein kinase II: An unforgettable kinase. J Neurosci 24: 8391–8393.

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Groenendyk J, Papp S, Dabrowska M, Knoblach B, et al. 2003. Identification of an N-domain histidine essential for chaperone function in calreticulin. J Biol Chem 278: 50645–50653.

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Nakamura K, Lynch J, Opas M, Olson EN, et al. 2002. Cardiac-specific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. J Biol Chem 277: 50776–50779.

    Article  CAS  PubMed  Google Scholar 

  • Holaska JM, Black BE, Love DC, Hanover JA, Leszyk J, et al. 2001. Calreticulin is a receptor for nuclear export. J Cell Biol 152: 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Huang GN, Zeng WJ, Kim Y, Yuan JP, Han L, et al. 2006. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama K, Ihara Y, Goto S, Urata Y, Toda G, et al. 2002. Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem 277: 19255–19264.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Puceat M, Perez-Terzic C, Mery A, Nakamura K, et al. 2002. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis. J Cell Biol 158: 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Li SS, Liu Z, Uzunel M, Sundqvist KG. 2006. Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood 108: 3112–3120.

    Article  CAS  PubMed  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, et al. 2005. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15: 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  • Lozyk MD, Papp S, Zhang X, Nakamura K, Michalak M, et al. 2006. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice. BMC Dev Biol 6: 54.

    Article  PubMed  Google Scholar 

  • Lynch J, Guo L, Gelebart P, Chilibeck K, Xu J, et al. 2005. Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade. J Cell Biol 170: 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Chilibeck K, Qui Y, Michalak M. 2006. Assembling pieces of the cardiac puzzle; calreticulin and calcium-dependent pathways in cardiac development, health, and disease. Trends Cardiovasc Med 16: 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Malcuit C, Kurokawa M, Fissore RA. 2006. Calcium oscillations and mammalian egg activation. J Cell Physiol 206: 565–573.

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Groenendyk J, Steiner SS, Guo L, Dabrowska M, et al. 2006. Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. J Biol Chem 281: 2338–2346.

    Article  CAS  PubMed  Google Scholar 

  • Meldolesi J, Pozzan T. 1998. The endoplasmic reticulum Ca2+ store: A view from the lumen. Trends Biochem Sci 23: 10–14.

    Article  CAS  PubMed  Google Scholar 

  • Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, et al. 2005. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. Mol Biol Cell 16: 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  • Mery L, Mesaeli N, Michalak M, Opas M, Lew DP, et al. 1996. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 271: 9332–9339.

    Article  CAS  PubMed  Google Scholar 

  • Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, et al. 1999. Calreticulin is essential for cardiac development. J Cell Biol 144: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Michalak M, Robert Parker JM, Opas M. 2002. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32: 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Mikoshiba K. 2006. Inositol 1,4,5-trisphosphate IP3 receptors and their role in neuronal cell function. J Neurochem 97: 1627–1633.

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, et al. 2004. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13: 125–135.

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Dorn IG II. 2001. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63: 391–426.

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Li L, Olson EN. 1996. Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity. J Biol Chem 271: 17199–17204.

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, et al. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Robertson M, Liu G, Dickie P, Nakamura K, et al. 2001a. Complete heart block and sudden death in mice overexpressing calreticulin. J Clin Invest 107: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, et al. 2001b. Functional specialization of calreticulin domains. J Cell Biol 154: 961–972.

    Article  CAS  PubMed  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, et al. 2007. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13: 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, et al. 2001. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–795.

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. 2003. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 116: 2917–2927.

    Article  CAS  PubMed  Google Scholar 

  • Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, et al. 2000. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105: 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, et al. 2006. Orail is an essential pore subunit of the CRAC channel. Nature 443: 230–233.

    Article  CAS  PubMed  Google Scholar 

  • Ranger AM, Grusby MJ, Hodge MR, Gravallese EM, de la Brousse FC, et al. 1998. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392: 186–190.

    Article  CAS  PubMed  Google Scholar 

  • Rusnak F, Mertz P. 2000. Calcineurin: Form and function. Physiol Rev 80: 1483–1521.

    CAS  PubMed  Google Scholar 

  • Stemmer PM, Klee CB. 1994. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33: 6859–6866.

    Article  CAS  PubMed  Google Scholar 

  • Tutuncu L, Stein P, Ord TS, Jorgez CJ, Williams CJ. 2004. Calreticulin on the mouse egg surface mediates transmembrane signaling linked to cell cycle resumption. Dev Biol 270: 246–260.

    Article  CAS  PubMed  Google Scholar 

  • Webb SE, Miller AL. 2003. Calcium signalling during embryonic development. Nat Rev Mol Cell Biol 4: 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Webb SE, Moreau M, Leclerc C, Miller AL. 2005. Calcium transients and neural induction in vertebrates. Cell Calcium 37: 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Whitaker M. 2006. Calcium at fertilization and in early development. Physiol Rev 86: 25–88.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, et al. 2000. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19: 1963–1973.

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Longo FJ, Wintermantel MR, Jiang X, Clark RA, et al. 2000. Calreticulin modulates capacitative Ca2+ influx by controlling the extent of inositol 1,4,5-trisphophate-induced Ca2+ store depletion. J Biol Chem 275: 36676–36682.

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, New L, Kravchenko VV, Kato Y, Gram H, et al. 1999. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19: 21–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by the CIHR and AHFMR. M.M. is a CIHR Senior Investigator.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Groenendyk, J., Michalak, M. (2009). Calreticulin-Dependent Signaling During Embryonic Development. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_28

Download citation

Publish with us

Policies and ethics