Skip to main content
  • 1656 Accesses

Abstract

The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular tetrameric calcium (Ca2+)-release channel localized predominantly on the endoplasmic reticulum of all cell types. IP3R releases Ca2+ into the cytoplasm in response to inositol 1,4,5-trisphosphate (IP3) produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes, including gene transcription, secretion, and synaptic plasticity (see Chapter 25). This versatility is derived from the diverse properties of IP3R. Three IP3R isoforms in mammals and a single isoform in invertebrates are expressed with several splice variants. Though they have conserved functional domains, IP3R channel activity is regulated in an isoform-specific manner by IP3 and other ligands, such as Ca2+ and ATP, and also by multiple interacting proteins. Recent biochemical, electrophysiological, and structural analyses have deepened our understanding of the functional properties of IP3R. Herein, we review the genetic and functional structures of IP3R and discuss the functional diversity of IP3R isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins CE, Morris SA, De Smedt H, Sienaert I, Torok K, et al. 2000. Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J 345(Pt 2): 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, et al. 2006. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22: 795–806.

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. 2003. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 278: 10602–10612.

    Article  PubMed  CAS  Google Scholar 

  • Baylis HA, Furuichi T, Yoshikawa F, Mikoshiba K, Sattelle DB. 1999. Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1). J Mol Biol 294: 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ. 1993. Inositol trisphosphate and calcium signalling. Nature 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF. 1989. Inositol phosphates and cell signalling. Nature 341: 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Ehrlich BE. 1993. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. Neuron 10: 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE. 1991. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Takeda J, Janssen H, Seino S, Bell GI. 1993. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 268: 11356–11363.

    PubMed  CAS  Google Scholar 

  • Boehning D, Joseph SK. 2000a. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells. J Biol Chem 275: 21492–21499.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Joseph SK. 2000b. Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 19: 5450–5459.

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Mak DO, Foskett JK, Joseph SK. 2001. Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels. J Biol Chem 276: 13509–13512.

    PubMed  CAS  Google Scholar 

  • Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, et al. 2002. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420: 696–700.

    Article  PubMed  CAS  Google Scholar 

  • Bosanac I, Michikawa T, Mikoshiba K, Ikura M. 2004. Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 1742: 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, et al. 2005. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Bultynck G, Szlufcik K, Kasri NN, Assefa Z, Callewaert G, et al. 2004. Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381: 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick CC, Saito A, Fleischer S. 1990. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci USA 87: 2132–2136.

    Article  PubMed  CAS  Google Scholar 

  • Chen SR, Ebisawa K, Li X, Zhang L. 1998. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem 273: 14675–14678.

    Article  PubMed  CAS  Google Scholar 

  • da Fonseca PC, Morris SA, Nerou EP, Taylor CW, Morris EP. 2003. Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. Proc Natl Acad Sci USA 100: 3936–3941.

    Article  PubMed  CAS  Google Scholar 

  • Danoff SK, Ferris CD, Donath C, Fischer GA, Munemitsu S, et al. 1991. Inositol 1,4,5-trisphosphate receptors: Distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci USA 88: 2951–2955.

    Article  PubMed  CAS  Google Scholar 

  • De Young GW, Keizer J. 1992. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA 89: 9895–9899.

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, et al. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69–77.

    Article  PubMed  CAS  Google Scholar 

  • Du GG, MacLennan DH. 1998. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 273: 31867–31872.

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Cameron AM, Bredt DS, Huganir RL, Snyder SH. 1991. Inositol 1,4,5-trisphosphate receptor is phosphorylated by cyclic AMP-dependent protein kinase at serines 1755 and 1589. Biochem Biophys Res Commun 175: 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Huganir RL, Snyder SH. 1990. Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci USA 87: 2147–2151.

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Huganir RL, Supattapone S, Snyder SH. 1989. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Finch EA, Turner TJ, Goldin SM. 1991. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252: 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO. 2007. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593–658.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Simon-Chazottes D, Fujino I, Yamada N, Hasegawa M, et al. 1993. Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (Insp3r1) in the mouse central nervous system. Receptors Channels 1: 11–24.

    PubMed  CAS  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, et al. 1989. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342: 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Futatsugi A, Kuwajima G, Mikoshiba K. 1998. Muscle-specific mRNA isoform encodes a protein composed mainly of the N-terminal 175 residues of type 2 Ins(1,4,5)P3 receptor. Biochem J 334(Pt 3): 559–563.

    PubMed  CAS  Google Scholar 

  • Galvan DL, Borrego-Diaz E, Perez PJ, Mignery GA. 1999. Subunit oligomerization, and topology of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 274: 29483–29492.

    Article  PubMed  CAS  Google Scholar 

  • Galvan DL, Mignery GA. 2002. Carboxyl-terminal sequences critical for inositol 1,4,5-trisphosphate receptor subunit assembly. J Biol Chem 277: 48248–48260.

    Article  PubMed  CAS  Google Scholar 

  • Gordon SE, Varnum MD, Zagotta WN. 1997. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19: 431–441.

    Article  PubMed  CAS  Google Scholar 

  • Gower NJ, Temple GR, Schein JE, Marra M, Walker DS, et al. 2001. Dissection of the promoter region of the inositol 1,4,5-trisphosphate receptor gene, itr-1, in C. elegans: a molecular basis for cell-specific expression of IP3R isoforms. J Mol Biol 306: 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Groswald DE, Kelly PT. 1984. Evidence that a cerebellum-enriched, synaptic junction glycoprotein is related to fodrin and resists extraction with triton in a calcium-dependent manner. J Neurochem 42: 534–546.

    Article  PubMed  CAS  Google Scholar 

  • Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE. 1998. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 396: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K. 2002. Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem 277: 21115–21118.

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Terauchi A, Mikoshiba K. 2003. Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium. J Biol Chem 278: 52881–52889.

    Article  PubMed  CAS  Google Scholar 

  • Harnick DJ, Jayaraman T, Ma Y, Mulieri P, Go LO, et al. 1995. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. J Biol Chem 270: 2833–2840.

    Article  PubMed  CAS  Google Scholar 

  • Hasan G, Rosbash M. 1992. Drosophila homologs of two mammalian intracellular Ca2+-release channels: Identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116: 967–975.

    PubMed  CAS  Google Scholar 

  • Hattori M, Suzuki AZ, Higo T, Miyauchi H, Michikawa T, et al. 2004. Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signaling. J Biol Chem 279: 11967–11975.

    Article  PubMed  CAS  Google Scholar 

  • Haug LS, Jensen V, Hvalby O, Walaas SI, Ostvold AC. 1999. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J Biol Chem 274: 7467–7473.

    Article  PubMed  CAS  Google Scholar 

  • Henzi V, MacDermott AB. 1992. Characteristics and function of Ca2+- and inositol 1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 46: 251–273.

    Article  PubMed  CAS  Google Scholar 

  • Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, et al. 2005. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120: 85–98.

    Article  PubMed  CAS  Google Scholar 

  • Hirata M, Yanaga F, Koga T, Ogasawara T, Watanabe Y, et al. 1990. Stereospecific recognition of inositol 1,4,5-trisphosphate analogs by the phosphatase, kinase, and binding proteins. J Biol Chem 265: 8404–8407.

    PubMed  CAS  Google Scholar 

  • Iida N, Bourguignon LY. 1994. A new splice variant of the inositol-1,4,5-triphosphate (IP3) receptor. Cell Signal 6: 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Iino M. 1990. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95: 1103–1122.

    Article  PubMed  CAS  Google Scholar 

  • Iino M. 1991. Effects of adenine nucleotides on inositol 1,4,5-trisphosphate-induced calcium release in vascular smooth muscle cells. J Gen Physiol 98: 681–698.

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K. 2007. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 282: 12755–12764.

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, et al. 2005. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 280: 10305–10317.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Chiba K, Uchiyama T, Yoshikawa F, Suzuki F, et al. 2002. Molecular characterization of the starfish inositol 1,4,5-trisphosphate receptor and its role during oocyte maturation and fertilization. J Biol Chem 277: 2763–2772.

    Article  PubMed  CAS  Google Scholar 

  • Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. 2002a. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J 21: 3575–3581.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, et al. 2002b. The open pore conformation of potassium channels. Nature 417: 523–526.

    Article  PubMed  CAS  Google Scholar 

  • Joseph SK, Boehning D, Pierson S, Nicchitta CV. 1997. Membrane insertion, glycosylation, and oligomerization of inositol trisphosphate receptors in a cell-free translation system. J Biol Chem 272: 1579–1588.

    Article  PubMed  CAS  Google Scholar 

  • Joseph SK, Pierson S, Samanta S. 1995. Trypsin digestion of the inositol trisphosphate receptor: Implications for the conformation and domain organization of the protein. Biochem J 307(Pt 3): 859–865.

    PubMed  CAS  Google Scholar 

  • Kaftan EJ, Ehrlich BE, Watras J. 1997. Inositol 1,4,5-trisphosphate (InsP3) and calcium interact to increase the dynamic range of InsP3 receptor-dependent calcium signaling. J Gen Physiol 110: 529–538.

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Kang S, Yoo SH, Park S. 2007. Identification of residues participating in the interaction between an intraluminal loop of inositol 1,4,5-trisphosphate receptor and a conserved N-terminal region of chromogranin B. Biochim Biophys Acta 1774: 502–509.

    PubMed  CAS  Google Scholar 

  • Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, et al. 2004. Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23: 312–321.

    Article  PubMed  CAS  Google Scholar 

  • Katayama E, Funahashi H, Michikawa T, Shiraishi T, Ikemoto T, et al. 1996. Native structure and arrangement of inositol-1,4,5-trisphosphate receptor molecules in bovine cerebellar Purkinje cells as studied by quick-freeze deep-etch electron microscopy. EMBO J 15: 4844–4851.

    PubMed  CAS  Google Scholar 

  • Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, et al. 1993. The Xenopus IP3 receptor: Structure, function, and localization in oocytes and eggs. Cell 73: 555–570.

    Article  PubMed  CAS  Google Scholar 

  • Kuo A, Domene C, Johnson LN, Doyle DA, Venien-Bryan C. 2005. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13: 1463–1472.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter JD, Clapham DE. 1992. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Lievremont JP, Lancien H, Hilly M, Mauger JP. 1996. The properties of a subtype of the inositol 1,4,5-trisphosphate receptor resulting from alternative splicing of the mRNA in the ligand-binding domain. Biochem J 317(Pt 3): 755–762.

    PubMed  CAS  Google Scholar 

  • Lin C, Widjaja J, Joseph SK. 2000. The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J Biol Chem 275: 2305–2311.

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R. 2005a. Voltage sensor of Kv12: Structural basis of electromechanical coupling. Science 309: 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R. 2005b. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897–903.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R. 2003. Potassium channels. FEBS Lett 555: 62–65.

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, et al. 1991. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266: 1109–1116.

    PubMed  CAS  Google Scholar 

  • Maeda N, Niinobe M, Nakahira K, Mikoshiba K. 1988. Purification and characterization of P400 protein, a glycoprotein characteristic of Purkinje cell, from mouse cerebellum. J Neurochem 51: 1724–1730.

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Niinobe M, Inoue Y, Mikoshiba K. 1989. Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse cerebellum. Dev Biol 133: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Niinobe M, Mikoshiba K. 1990. A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J 9: 61–67.

    PubMed  CAS  Google Scholar 

  • Maes K, Missiaen L, De Smet P, Vanlingen S, Callewaert G, et al. 2000. Differential modulation of inositol 1,4,5-trisphosphate receptor type 1 and type 3 by ATP. Cell Calcium 27: 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Maes K, Missiaen L, Parys JB, De Smet P, Sienaert I, et al. 2001. Mapping of the ATP-binding sites on inositol 1,4,5-trisphosphate receptor type 1 and type 3 homotetramers by controlled proteolysis and photoaffinity labeling. J Biol Chem 276: 3492–3497.

    Article  PubMed  CAS  Google Scholar 

  • Mak DO, McBride S, Foskett JK. 1998. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 95: 15821–15825.

    Article  PubMed  CAS  Google Scholar 

  • Mak DO, McBride S, Foskett JK. 2001. Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. J Gen Physiol 117: 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Mallet J, Huchet M, Pougeois R, Changeux JP. 1976. Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res 103: 291–312.

    Article  PubMed  CAS  Google Scholar 

  • Maranto AR. 1994. Primary structure, ligand binding, and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium. J Biol Chem 269: 1222–1230.

    PubMed  CAS  Google Scholar 

  • Meyer T, Holowka D, Stryer L. 1988. Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Michikawa T, Hamanaka H, Otsu H, Yamamoto A, Miyawaki A, et al. 1994. Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem 269: 9184–9189.

    PubMed  CAS  Google Scholar 

  • Mignery GA, Newton CL, Archer BT 3rd, Südhof TC. 1990. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 265: 12679–12685.

    PubMed  CAS  Google Scholar 

  • Mignery GA, Südhof TC. 1990. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J 9: 3893–3898.

    PubMed  CAS  Google Scholar 

  • Mignery GA, Südhof TC, Takei K, De Camilli P. 1989. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342: 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Mikoshiba K, Huchet M, Changeux JP. 1979. Biochemical and immunological studies on the P400 protein, a protein characteristic of the Purkinje cell from mouse and rat cerebellum. Dev Neurosci 2: 254–275.

    Article  PubMed  CAS  Google Scholar 

  • Mikoshiba K, Okano H, Tsukada Y. 1985. P400 protein characteristic to Purkinje cells and related proteins in cerebella from neuropathological mutant mice: Autoradiographic study by 14C-leucine and phosphorylation. Dev Neurosci 7: 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, et al. 1999. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18: 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, et al. 2001. Ca2+-sensor region of IP3 eceptor controls intracellular Ca2+ signaling. EMBO J 20: 1674–1680.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Furuichi T, Maeda N, Mikoshiba K. 1990. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron 5: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Furuichi T, Ryou Y, Yoshikawa S, Nakagawa T, et al. 1991. Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. Proc Natl Acad Sci USA 88: 4911–4915.

    Article  PubMed  CAS  Google Scholar 

  • Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, et al. 1995. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 270: 14700–14704.

    Article  PubMed  CAS  Google Scholar 

  • Munger SD, Gleeson RA, Aldrich HC, Rust NC, Ache BW, et al. 2000. Characterization of a phosphoinositide-mediated odor transduction pathway reveals plasma membrane localization of an inositol 1,4, 5-trisphosphate receptor in lobster olfactory receptor neurons. J Biol Chem 275: 20450–20457.

    Article  PubMed  CAS  Google Scholar 

  • Nahorski SR, Potter BV. 1989. Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol Sci 10: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Nakade S, Maeda N, Mikoshiba K. 1991. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Biochem J 277(Pt 1): 125–131.

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K. 1991a. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 88: 6244–6248.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Shiota C, Okano H, Mikoshiba K. 1991b. Differential localization of alternative spliced transcripts encoding inositol 1,4,5-trisphosphate receptors in mouse cerebellum and hippocampus: In situ hybridization study. J Neurochem 57: 1807–1810.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Hattori M, Uchida K, Nakamura T, Tateishi Y, et al. 2004. The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: Possible physiological significance of specific cleavage by caspase 3. Biochem J 377: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Newton CL, Mignery GA, Südhof TC. 1994. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 269: 28613–28619.

    PubMed  CAS  Google Scholar 

  • Nordquist DT, Kozak CA, Orr HT. 1988. cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J Neurosci 8: 4780–4789.

    PubMed  CAS  Google Scholar 

  • Nucifora FC Jr, Li SH, Danoff S, Ullrich A, Ross CA. 1995. Molecular cloning of a cDNA for the human inositol 1,4,5-trisphosphate receptor type 1, and the identification of a third alternatively spliced variant. Brain Res Mol Brain Res 32: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Onoue H, Tanaka H, Tanaka K, Doira N, Ito Y. 2000. Heterooligomer of type 1 and type 2 inositol 1, 4, 5-trisphosphate receptor expressed in rat liver membrane fraction exists as tetrameric complex. Biochem Biophys Res Commun 267: 928–933.

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Choi J, Yao Y. 1996. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: Hot spots, puffs and blips. Cell Calcium 20: 105–121.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, Boehning D, Snyder SH. 2004a. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73: 437–465.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, van Rossum DB, Barrow RK, Snyder SH. 2004b. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101: 2328–2332.

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP. 2000. Novel repeats in ryanodine and IP3 receptors and protein O-mannosyltransferases. Trends Biochem Sci 25: 48–50.

    PubMed  CAS  Google Scholar 

  • Ramos-Franco J, Bare D, Caenepeel S, Nani A, Fill M, et al. 2000. Single-channel function of recombinant type 2 inositol 1,4, 5-trisphosphate receptor. Biophys J 79: 1388–1399.

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Franco J, Fill M, Mignery GA. 1998. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys J 75: 834–839.

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Franco J, Galvan D, Mignery GA, Fill M. 1999. Location of the permeation pathway in the recombinant type 1 inositol 1,4,5-trisphosphate receptor. J Gen Physiol 114: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • Regan MR, Lin DD, Emerick MC, Agnew WS. 2005. The effect of higher order RNA processes on changing patterns of protein domain selection: A developmentally regulated transcriptome of type 1 inositol 1,4,5-trisphosphate receptors. Proteins 59: 312–331.

    Article  PubMed  CAS  Google Scholar 

  • Riley AM, Morris SA, Nerou EP, Correa V, Potter BV, et al. 2002. Interactions of inositol 1,4,5-trisphosphate (IP3) receptors with synthetic poly (ethylene glycol)-linked dimers of IP3 suggest close spacing of the IP3-binding sites. J Biol Chem 277: 40290–40295.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum T, Gordon SE. 2002. Dissecting intersubunit contacts in cyclic nucleotide-gated ion channels. Neuron 33: 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K, et al. 2004. Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J Mol Biol 336: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Schug ZT, Joseph SK. 2006. The role of the S4–S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281: 24431–24440.

    Article  PubMed  CAS  Google Scholar 

  • Schulteis CT, Nagaya N, Papazian DM. 1996. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels. Biochemistry 35: 12133–12140.

    Article  PubMed  CAS  Google Scholar 

  • Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, et al. 2003. Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. J Biol Chem 278: 21319–21322.

    Article  PubMed  CAS  Google Scholar 

  • Shah PK, Sowdhamini R. 2001. Structural understanding of the transmembrane domains of inositol triphosphate receptors and ryanodine receptors towards calcium channeling. Protein Eng 14: 867–874.

    Article  PubMed  CAS  Google Scholar 

  • Shirakabe K, Priori G, Yamada H, Ando H, Horita S, et al. 2006. IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3 − cotransporter 1 (pNBC1). Proc Natl Acad Sci USA 103: 9542–9547.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, De Smedt H, Parys JB, Missiaen L, Vanlingen S, et al. 1996. Characterization of a cytosolic and a luminal Ca2+ binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem 271: 27005–27012.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, et al. 1997. Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 272: 25899–25906.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, et al. 2002. Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Sinha M, Hasan G. 1999. Sequencing and exon mapping of the inositol 1,4,5-trisphosphate receptor cDNA from Drosophila embryos suggests the presence of differentially regulated forms of RNA and protein. Gene 233: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Soulsby MD, Alzayady K, Xu Q, Wojcikiewicz RJ. 2004. The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5-trisphosphate receptor by PKA and PKG. FEBS Lett 557: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Srikanth S, Wang Z, Tu H, Nair S, Mathew MK, et al. 2004. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants. Biophys J 86: 3634–3646.

    Article  PubMed  CAS  Google Scholar 

  • Street VA, Bosma MM, Demas VP, Regan MR, Lin DD, et al. 1997. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 17: 635–645.

    PubMed  CAS  Google Scholar 

  • Südhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA. 1991. Structure of a novel InsP3 receptor. EMBO J 10: 3199–3206.

    PubMed  Google Scholar 

  • Suhara W, Kobayashi M, Sagara H, Hamada K, Goto T, et al. 2006. Visualization of inositol 1,4,5-trisphosphate receptor by atomic force microscopy. Neurosci Lett 391: 102–107.

    Article  PubMed  CAS  Google Scholar 

  • Supattapone S, Worley PF, Baraban JM, Snyder SH. 1988. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263: 1530–1534.

    PubMed  CAS  Google Scholar 

  • Taylor CW, Putney JW Jr. 1985. Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes. Biochem J 232: 435–438.

    PubMed  CAS  Google Scholar 

  • Taylor CW, Genazzani AA, Morris SA. 1999. Expression of inositol trisphosphate receptors. Cell Calcium 26: 237–251.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Laude AJ. 2002. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32: 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, et al. 2003. A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 278: 49699–49706.

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Miyakawa T, Wang Z, Glouchankova L, Iino M, et al. 2002. Functional characterization of the type 1 inositol 1,4,5-trisphosphate receptor coupling domain SII(+/−) splice variants and the Opisthotonos mutant form. Biophys J 82: 1995–2004.

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Nosyreva E, Miyakawa T, Wang Z, Mizushima A, et al. 2003. Functional and biochemical analysis of the type 1 inositol (1,4,5)-trisphosphate receptor calcium sensor. Biophys J 85: 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Wang Z, Bezprozvanny I. 2005a. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: A role of calcium sensor region. Biophys J 88: 1056–1069.

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I. 2005b. Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88: 1046–1055.

    Article  PubMed  CAS  Google Scholar 

  • Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, et al. 1998. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21: 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Tucker SJ, Ashcroft FM. 1999. Mapping of the physical interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2. J Biol Chem 274: 33393–33397.

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. 2003. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278: 16551–16560.

    Article  PubMed  CAS  Google Scholar 

  • Varnum MD, Zagotta WN. 1997. Interdomain interactions underlying activation of cyclic nucleotide-gated channels. Science 278: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Wagner LE 2nd, Betzenhauser MJ, Yule DI. 2006. ATP binding to a unique site in the type-1 S2- inositol 1,4,5-trisphosphate receptor defines susceptibility to phosphorylation by protein kinase A. J Biol Chem 281: 17410–17419.

    Article  PubMed  CAS  Google Scholar 

  • Wagner LE 2nd, Li WH, Joseph SK, Yule DI. 2004. Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 279: 46242–46252.

    Article  PubMed  CAS  Google Scholar 

  • Wagner LE 2nd, Li WH, Yule DI. 2003. Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: A mutational analysis of the functionally important sites in the S2+ and S2- splice variants. J Biol Chem 278: 45811–45817.

    Article  PubMed  CAS  Google Scholar 

  • Walaas SI, Nairn AC, Greengard P. 1986. PCPP-260, a Purkinje cell-specific cyclic AMP-regulated membrane phosphoprotein of Mr 260,000. J Neurosci 6: 954–961.

    PubMed  CAS  Google Scholar 

  • Watras J, Bezprozvanny I, Ehrlich BE. 1991. Inositol 1,4,5-trisphosphate-gated channels in cerebellum: Presence of multiple conductance states. J Neurosci 11: 3239–3245.

    PubMed  CAS  Google Scholar 

  • Wilcox RA, Primrose WU, Nahorski SR, Challiss RA. 1998. New developments in the molecular pharmacology of the myo-inositol 1,4,5-trisphosphate receptor. Trends Pharmacol Sci 19: 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, West DJ, Sitsapesan R. 2001. Light at the end of the Ca2+-release channel tunnel: Structures and mechanisms involved in ion translocation in ryanodine receptor channels. Q Rev Biophys 34: 61–104.

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Colvin JS, Snyder SH. 1987a. Inositol trisphosphate receptor localization in brain: Variable stoichiometry with protein kinase C. Nature 325: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Snyder SH. 1989. Inositol 1,4,5-trisphosphate receptor binding: Autoradiographic localization in rat brain. J Neurosci 9: 339–346.

    PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH. 1987b. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem 262: 12132–12136.

    PubMed  CAS  Google Scholar 

  • Yamada N, Makino Y, Clark RA, Pearson DW, Mattei MG, et al. 1994. Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: Structure, function, regulation of expression and chromosomal localization. Biochem J 302(Pt 3): 781–790.

    PubMed  CAS  Google Scholar 

  • Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, et al. 1995. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308(Pt 1): 83–88.

    PubMed  CAS  Google Scholar 

  • Yamamoto-Hino M, Sugiyama T, Hikichi K, Mattei MG, Hasegawa K, et al. 1994. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors Channels 2: 9–22.

    PubMed  CAS  Google Scholar 

  • Yang J, McBride S, Mak DO, Vardi N, Palczewski K, et al. 2002. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci USA 99: 7711–7716.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Lewis MS. 1998. Interaction between an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor and the near N-terminal peptide of chromogranin A. FEBS Lett 427: 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Lewis MS. 2000. Interaction of chromogranin B and the near N-terminal region of chromogranin B with an intraluminal loop peptide of the inositol 1,4, 5-trisphosphate receptor. J Biol Chem 275: 30293–30300.

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, So SH, Kweon HS, Lee JS, Kang MK, Jeon CJ. 2000. Coupling of the inositol 1,4,5-triphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem 275: 12553–12559.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa F, Iwasaki H, Michikawa T, Furuichi T, Mikoshiba K. 1999. Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem 274: 316–327.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, et al. 1996. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271: 18277–18284.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K. 1992. Molecular cloning and characterization of the inositol 1,4,5-triphosphate receptor in Drosophila melanogaster. J Biol Chem 267: 16613–16619.

    PubMed  CAS  Google Scholar 

  • Zhang S, Malmersjo S, Li J, Ando H, Aizman O, et al. 2006. Distinct role of the N-terminal tail of the Na,K-ATPase catalytic subunit as a signal transducer. J Biol Chem 281: 21954–21962.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Drs. Mitsuhiko Ikura, Chikara Sato, Yoshinori Fujiyoshi, and their laboratory members for their collaboration in the structural analyses. We also thank the many colleagues whose names are cited in the references. The research in our laboratory is supported by grants from the Japan Science and Technology Agency (KM) and by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KM).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Yamazaki, H., Mikoshiba, K. (2009). Structure of IP3 Receptor. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_24

Download citation

Publish with us

Policies and ethics