Skip to main content

Covariance Matrix

  • Reference work entry
Encyclopedia of Machine Learning
  • 637 Accesses

Definition

It is convenient to define a covariance matrix by using multi-variate random variables (mrv): X = (X 1, …, X d ) ⊤ ​. For univariate random variables X i and X j , their covariance is defined as:

$$\textrm{ Cov}({X}_{i},{X}_{j}) = \mathbb{E}\left [({X}_{i} - {\mu }_{i})({X}_{j} - {\mu }_{j})\right ],$$

where μ i is the mean of X i : \({\mu }_{i} = \mathbb{E}[{X}_{i}]\). As a special case, when i = j, then we get the variance of X i , Var(X i ) = Cov(X i , X i ). Now in the setting of mrv, assuming that each component random variable X i has finite variance under its marginal distribution, the covariance matrix Cov(X, X) can be defined as a d-by-d matrix whose (i, j)-th entry is the covariance:

$${(\textrm{ Cov}(\mathbf{X},\mathbf{X}))}_{ij} = \textrm{ Cov}({X}_{i},{X}_{j}) = \mathbb{E}\left [({X}_{i} - {\mu }_{i})({X}_{j} - {\mu }_{j})\right ].$$

And its inverse is also called precision matrix.

Motivation and Background

The covariance between two univariate random variables...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  • Casella, G., & Berger, R. (2002). Statistical inference (2nd ed.). Pacific Grove, CA: Duxbury.

    Google Scholar 

  • Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Schölkopf, B. (2005). Kernel methods for measuring independence. Journal of Machine Learning Research, 6, 2075–2129.

    Google Scholar 

  • Jolliffe, I. T. (2002) Principal component analysis (2nd ed.). Springer series in statistics. New York: Springer.

    MATH  Google Scholar 

  • Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic Press.

    MATH  Google Scholar 

  • Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA: MIT Press.

    Google Scholar 

  • Williams, C. K. I., & Rasmussen, C. E. (2006). Gaussian processes for regression. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Zhang, X. (2011). Covariance Matrix. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_183

Download citation

Publish with us

Policies and ethics