Skip to main content

Safety Pharmacology of Drugs with Osteoarthritis-Related Activity

  • Reference work entry
Drug Discovery and Evaluation
  • 824 Accesses

1 I.L.1. Cartilage Matrix Turnover in vitro

1.1 I.L.1.1. Modulation of Chondrocytic Proteoglycan Metabolism

1.1.1 Purpose and Rationale

Several agents and therapeutic principles addressing musculoskeletal disorders, applied either systemically or intraarticularly, have been discussed to potentially impair the integrity of articular cartilage (Raynauld et al. 2003; Adams et al. 2000; Theiler et al. 1994). Therefore, a reliable cellular assay is of interest to detect chondrodeleterious properties of a test drug in its early developmental stages.

In primary cultures, articular chondrocytes chondrocytesgrown in an artificial matrix after digestion of the original one, maintain their characteristic synthesis and turnover rate of cartilage matrix macromolecules for a long time. These metabolic processes can be influenced pharmacologically. In the following assay, compounds are tested for their effect upon the normal turnover of cartilage matrix by chondrocytes. The test is used to detect...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ME, Lussier AJ, Peyron JG (2000) A risk-benefit assessment of injections of hyaluronan and its derivatives in the treatment of osteoarthritis of the knee. Drug Safety 23:115–130

    Article  PubMed  CAS  Google Scholar 

  • Adcocks C, Collin P, Buttle DJ (2002) Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J Nutr 132:341–346

    PubMed  CAS  Google Scholar 

  • Archer CW, McDowell J, Bayliss MT et al. (1990) Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J Cell Sci 97:361–371

    PubMed  Google Scholar 

  • Aspden RM, Larsson T, Svensson R, Heinegard D (1991) Computer-controlled mechanical testing machine for small samples of biological viscoelastic material. J Biomed Engineering 13:521–525

    Article  PubMed  CAS  Google Scholar 

  • Aydelotte MB, Greenhill RR, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Conn Tiss Res 18:223–234

    Article  CAS  Google Scholar 

  • Aydelotte MB, Kuettner KE (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Conn Tiss Res 18:205–222

    Article  CAS  Google Scholar 

  • Aydelotte MB, Raiss RX, Caterson B, Kuettner KE (1992) Influence of interleukin-1 on the morphology and proteoglycan metabolism of cultured bovine articular chondrocytes. Conn Tiss Res 28:143–159

    Article  CAS  Google Scholar 

  • Bank RA, Beekman B, Verzijl N et al. (1997) Sensitive fluorimetric quantitation of pyridinium and pentosidine crosslinks in biological samples in a single high-performance liquid chromatographic run. J Chromatogr B Biomed Sci Appl 703:37–44

    Article  CAS  Google Scholar 

  • Bassleer C, Henrotin Y, Franchimont P (1990) In vitro assays of chondrocyte functions: the influence of drugs and hormones. Scand J Rheumatology Suppl 81:13–20

    Article  CAS  Google Scholar 

  • Bassleer CT, Henrotin YE, Reginster JYL, Franchimont PP (1992) Effects of tiaprofenic acid and acetylsalicylic acid on human articular chondrocytes in 3-dimensional culture. J Rheumatol 19:1433–1438

    PubMed  CAS  Google Scholar 

  • Benya PD, Schaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  PubMed  CAS  Google Scholar 

  • Blanque R, Cottereaux C, Gardner CR (2001) Phasic production of urinary pyridinium crosslinks in mice: the effect of ovariectomy. Calcif Tissue Int 68:102–108

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure J, Kadhom N, Cohen-Solal L et al. (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212:97–104

    Article  PubMed  CAS  Google Scholar 

  • Brandt KD (2002) Animal models of osteoarthritis. Biorheology 39:221–235

    PubMed  CAS  Google Scholar 

  • Brewster M, Lewis EJ, Wilson KL et al. (1998) Ro 32-3555, an orally active collagenase selective inhibitor, prevents structural damage in the STR/ORT mouse model of osteoarthritis. Arthritis Rheumatism 41:1639–1644

    Article  PubMed  CAS  Google Scholar 

  • Cawston TE, Ellis AJ, Humm G et al. (1995) Interleukin-1 and oncostatin M in combination promote the release of collagen fragments from bovine nasal cartilage in culture. Biochem Biophys Res Commun 215:377–385

    Article  PubMed  CAS  Google Scholar 

  • Chayen J, Bitensky L, Mehdizadeh S et al. (1994) Testing drugs on human osteoarthritic articular cartilage. Cell Biochem Funct 12:63–68

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR (1995) The specificity of collagen cross-links as markers of bone and connective tissue degradation. Acta Orthop Scand Suppl 266:166–170

    CAS  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 83:173–177

    Google Scholar 

  • Fitzgerald JB, Jin M, Dean D et al. (2004) Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP. J Biol Chemistry 279:19502–19511

    Article  PubMed  CAS  Google Scholar 

  • Gendron C, Kashiwagi M, Hughes C et al. (2003) TIMP-3 inhibits aggrecanase-mediated glycosaminoglycan release from cartilage explants stimulated by catabolic factors. FEBS Lett 555:431–436

    Article  PubMed  CAS  Google Scholar 

  • Greiling H, Gressner AM, Stuhlsatz HW (1977) Influence of anti-inflammatory drugs on connective tissue metabolism. In: Glynn LE, Schlumberger HD (eds) Experimental Models of Chronic Inflammatory Diseases. Springer Verlag, Berlin Heidelberg New York pp 406–420

    Google Scholar 

  • Guo J, Jourdian GW, MacCallum DK (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Conn Tiss Res 19:277–297

    Article  CAS  Google Scholar 

  • Henrotin Y, Bassleer C, Franchimont P(1992) In vitro effects of etodolac and acetylsalicylic acid on human chondrocyte metabolism. Agents and Actions 36:317–323

    PubMed  CAS  Google Scholar 

  • Hunter CJ, Mouw JK, Levenston ME (2004) Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage 12:117–130

    Article  PubMed  Google Scholar 

  • Häuselmann HJ, Fernandes RJ, Mok SS et al. (1994) Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107:17–27

    PubMed  Google Scholar 

  • Jacobson PB, Morgan SJ, Wilcox DM et al. (1999) A new spin on an old model. In vivo evaluation of disease progression by magnetic resonance imaging with respect to standard inflammatory parameters and histopathology in the adjuvant arthritis rat. Arthritis Rheumatism 42:2060–2073

    Article  PubMed  CAS  Google Scholar 

  • James IT, Perret D, Thompson PW (1990) Rapid assay for hard tissue collagen cross-links using isocratic ion-pair reversed-phase liquid chromatography. J Chromatogr 525:43–57

    Article  PubMed  CAS  Google Scholar 

  • Jortikka M, Lammi MJ, Parkkinen JJ et al. (1993) A high sensitivity dot-blot assay for proteoglycans by cuprolinic blue precipitation. Conn Tiss Res 29:263–272

    Article  CAS  Google Scholar 

  • Kaufmann J, Mueller A, Voigt A et al. (2003) Hydroxypyridinium collagen crosslinks in serum, urine, synovial fluid and synovial tissue in patients with rheumatoid arthritis compared with osteoarthritis. Rheumatology 42:314–320

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Sah RLY, Doong JYH, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176

    Article  PubMed  CAS  Google Scholar 

  • Kindt E, Gueneva-Boucheva K, Rekhter MD et al. (2003) Determination of hydroxyproline in plasma and tissue using electrospray mass spectrometry. J Pharm Biomed Anal 33:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Kisiday JD, Jin M, DiMicco MA et al. (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37:595–604

    Article  PubMed  Google Scholar 

  • Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  • Kolibas LM, Goldberg RL (1989) Effect of cytokines and anti-arthritic drugs on glycosaminoglycan synthesis by bovine articular chondrocytes. Agents and Actions 27:245–249

    Article  PubMed  CAS  Google Scholar 

  • Kozaci LD, Buttle DJ, Hollander AP (1997) Degradation of type II collagen, but not proteoglycan, correlates with matrix metalloproteinase activity in cartilage explant cultures. Arthritis and Rheumatism 40:164–174

    Article  PubMed  CAS  Google Scholar 

  • Lafeber FPG, van Roy H, Wilbrink B et al. (1992) Human osteoarthritic cartilage is synthetically more active but in culture less vital than normal cartilage. J Rheumatol 19:123–129

    PubMed  CAS  Google Scholar 

  • Lafeber FPJG, van der Kraan PM, van Roy JLAM et al. (1993) Articular cartilage explant culture; an appropriate in vitro system to compare osteoarthritic and normal human cartilage. Conn Tiss Res 29:287–299

    Article  CAS  Google Scholar 

  • Lane NE, Williams IIIRJ, Schurman DJ, Smith RL (1992) Inhibition of interleukin 1 induced chondrocyte protease activity by a corticosteroid and a nonsteroidal antiinflammatory drug. J Rheumatol 19:135–139

    PubMed  CAS  Google Scholar 

  • Larsson T, Aspden RM, Heinegard D (1991) Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 11:388–394

    PubMed  CAS  Google Scholar 

  • Malemud CJ, Stevenson S, Mehraban F et al. (1994) The proteoglycan synthesis repertoire of rabbit chondrocytes maintained in type II collagen gels. Osteoarthritis and Cartilage 2:29–42

    Article  PubMed  CAS  Google Scholar 

  • Mankin HJ, Dorfman H, Lipiello L (1971) Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surgery 53A:523–537

    Google Scholar 

  • McCollum R, Martel-Pelletier J, DiBattista J, Pelletier JP (1991) Regulation of interleukin 1 receptors in human articular chondrocytes. J Rheumatol (Suppl 27) 18:85–88

    Google Scholar 

  • McQuillan DJ, Handley CJ, Robinson HC (1986) Control of proteoglycan biosynthesis. Biochem J 237:741–747

    PubMed  CAS  Google Scholar 

  • Milner JM, Elliott SF, Cawston TE (2001) Activation of procollagenases is a key control point in cartilage collagen degradation. Interaction of serine and metalloproteinase pathways. Arthritis and Rheumatism 44:2084–2096

    Article  PubMed  CAS  Google Scholar 

  • Mow VC, Bachrach NM, Setton LA, Guilak F (1994) Stress, strain, pressure and flow fields in articular cartilage and chondrocytes. In: Mow VC, Guilak F, Tran-Son-Tay R, Hochmuth RM (eds) Cell mechanics and cellular engineering. Springer, New York, pp. 345–379

    Google Scholar 

  • Mueller A, Jakob K, Hein GE (2003) Evaluation of free and peptide-bound collagen crosslink excretion in different skeletal diseases. Ann Rheum Dis 62:65–67

    Article  Google Scholar 

  • Nixon JS, Bottomley KMK, Broadhurst MJ et al (1991) Potent collagenase inhibitors prevent interleukin-1-induced cartilage degradation in vitro. Int J Tiss Reac 13:237–243

    CAS  Google Scholar 

  • Oegema TRJ, Visco D (1999) Animal models of osteoarthritis. In: An YH, Friedman RJ (eds) Animal models in orthopaedic research. CRC press, Boca Raton pp 349–367

    Google Scholar 

  • Ostergaard K, Andersen CB, Petersen J et al. (1999) Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann Rheum Dis 58:208–213

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard K, Petersen J, Andersen CB et al. (1997) Histologic / histochemical grading system for osteoarthritic articular cartilage: reproducibility and validity. Arthritis Rheum 40:1766–1771

    Article  PubMed  CAS  Google Scholar 

  • Pelletier JP, Cloutier JM, Martel-Pelletier J (1989) In vitro effects of tiaprofenic acid, sodium salicylate and hydrocortisone on the proteoglycan metabolism of human osteoarthritic cartilage. J Rheumatol 16:646–655

    PubMed  CAS  Google Scholar 

  • Pelletier JP, Martel-Pelletier J (1989) Evidence for the involvement of interleukin 1 in human osteoarthritic cartilage degradation: protective effect of NSAID. J Rheumatol 16, Suppl 18:19–27

    CAS  Google Scholar 

  • Peterson JT (2004) Matrix metalloproteinase inhibitor development and the remodeling of drug discovery. Heart Failure Rev 9:63–79

    CAS  Google Scholar 

  • Pratta MA, Yao W, Decicco C et al. (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chemistry 278:45539–45545

    Article  PubMed  CAS  Google Scholar 

  • Raynauld JP, Buckland-Wright C, Ward R et al. (2003) Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee. Arthritis and Rheumatism 48:370–377

    Article  PubMed  CAS  Google Scholar 

  • Renkiewicz R, Qiu L, Lesch C et al. (2003) Broad–spectrum matrix metalloproteinase inhibitor marimastat–induced musculoskeletal side effects in rats. Arthritis Rheumatism 48:1742–1749

    Article  PubMed  CAS  Google Scholar 

  • Romeis B (1989) Mikroskopische Technik. 17thedn, Urban & Schwarzenberg, München

    Google Scholar 

  • Rosenberg L (1971) Chemical basis for the histological use of safranin-O in the study of articular cartilage. J Bone Joint Surgery 53A:69–82

    Google Scholar 

  • Sauerland K, Plaas AHK, Raiss RX, Steinmeyer J (2003b) The sulfation pattern of chondroitin sulfate from articular cartilage explants in response to mechanical loading. Biochim Biophys Acta 1638:241–248

    PubMed  CAS  Google Scholar 

  • Sauerland K, Raiss RX, Steinmeyer J (2003a) Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis Cartilage 11:343–350

    Article  PubMed  CAS  Google Scholar 

  • Seibel MJ, Woitge HW, Farahmand I et al. (1998) Automated and manual assays for urinary crosslinks of collagen: which assay to use?. Exp Clin Endocrinol Diabetes 106:143–148

    Article  PubMed  CAS  Google Scholar 

  • Seid JM, Rahman S, Graveley R et al. (1993) The effect of interleukin-1 on cytokine gene expression in cultured human articular chondrocytes analyzed by messenger RNA phenotyping. Arthritis and Rheumatism 36:35–43

    Article  PubMed  CAS  Google Scholar 

  • Shimizu C, Coutts RD, Healey RM et al. (1997) Method of histomorphometric assessment of glycosaminoglycans in articular cartilage. J Orthop Res 15:670–674

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Dillon EL, DeKerlegand DE, Davis-Street JE (2004) Variability of collagen crosslinks: impact of sample collection period. Calcif Tissue Int 74:336–341

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer J (1997) A computer-controlled mechanical culture system for biological testing of articular cartilage explants. J Biomechanics 30:841–845

    Article  CAS  Google Scholar 

  • Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittant cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthritis Cartilage 5:331–341

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer J, Daufeldt S, Taiwo YO (1998) Pharmacological effect of tetracyclines on proteoglycanases from interleukin-1-treated articular cartilage. Biochem Pharmacol 55:93–100

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer J, Knue S, Raiss RX, Pelzer I (1999) Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Osteoarthritis Cartilage 7:155–164

    Article  PubMed  CAS  Google Scholar 

  • Stone PJ, Beiser A, Gottlieb DJ (1998) Circadian variation of urinary excretion of elastin and collagen crosslinks. Proc Soc Exp Biol Med 218:229–233

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Iizawa T, Harada H et al. (2004) Cartilage degradation independent of MMP/aggrecanases. Osteoarthritis and Cartilage 12:1006–1014

    Article  PubMed  Google Scholar 

  • Szafranski JD, Grodzinsky AJ, Burger E et al. (2004) Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis. Osteoarthritis Cartilage 12:937–946

    Article  PubMed  Google Scholar 

  • Theiler R, Ghosh P, Brooks P (1994) Clinical, biochemical and imaging methods of assessing osteoarthritis and clinical trials with agents claiming “chondromodulating” activity. Osteoarthritis and Cartilage 2:1–23

    Article  PubMed  CAS  Google Scholar 

  • Urban JP (1994) The chondrocyte: A cell under pressure. Brit J Rheumatol 33:901–908

    Article  CAS  Google Scholar 

  • van den Berg W (2001) Lessons from animal models of osteoarthritis. Curr Opin Rheumatol 13:452–456

    Article  PubMed  Google Scholar 

  • van der Kraan P, Vitters E, van den Berg W (1992) Differential effect of transforming growth factor β on freshly isolated and cultured articular chondrocytes. J Rheumatol 19:140–145

    PubMed  Google Scholar 

  • van der Kraan PM, de Lange J, Vitters EL et al. (1994) Analysis of changes in proteoglycan content in murine articular cartilage using image analysis. Osteoarthritis Cartilage 2:207–214

    Article  PubMed  Google Scholar 

  • van Valburg AA, van Osch GJ, van der Kraan PM, van den Berg WB (1996) Quantification of morphometric changes in murine experimental osteoarthritis using image analysis. Rheumatol Int 15:181–187

    Article  PubMed  Google Scholar 

  • Verbruggen G, Veys EM, Malfait AM et al (1989) Proteoglycan metabolism in tissue cultured human articular cartilage. Influence of piroxicam. J Rheumatol 16:355–362

    PubMed  CAS  Google Scholar 

  • Verbruggen G, Veys EM, Malfait AM et al (1990) Proteoglycan metabolism in tissue-cultured human articular cartilage. Scand J Rheumatology 19:257–268

    Article  CAS  Google Scholar 

  • Verbruggen G, Veys EM, Wieme N et al. (1990) The synthesis and immobilisation of cartilage-specific proteoglycan by human chondrocytes in different concentrations of agarose. Clin Exp Rheumatol 8:371–378

    PubMed  CAS  Google Scholar 

  • Verzijl N, Wachsmuth L, TeKoppele JM, Raiss RX (2001) Urinary collagen cross–link excretion in STR/1N mice indicates cartilage destruction as an early event in the development of spontaneous osteoarthritis. Transact Orthop Res Soc 26:271

    Google Scholar 

  • Wachsmuth LK, Durchfeld-Meyer B, Jahn NI et al. (2002) Dynamics of matrix loss in the spontaneous osteoarthritic mouse strain STR-1N. In: Hascall VC, Kuettner KE (eds) The many faces of osteoarthritis. Birkhäuser, Basel, pp 45–49

    Google Scholar 

  • Wachsmuth LK, Raiss RX, Berg-Scholl I, Keiffer R (1999) Histological characterization of disease progression and therapeutic intervention in the spontaneous osteoarthritic STR-1N mouse. Transact Orthop Res Soc 24:461

    Google Scholar 

  • Weithmann KU, Schlotte V, Jeske V et al. (1997) Effects of tiaprofenic acid on urinary pyridinium crosslinks in adjuvant arthritic rats: Comparison with doxycycline. Inflamm Res 46:246–252

    Article  PubMed  CAS  Google Scholar 

  • Wolf A, Raiss RX, Steinmeyer J (2003) Fibronectin metabolism of cartilage explants in response to the frequency of intermittent loading. J Orthopaedic Res 21:1081–1089

    Article  CAS  Google Scholar 

  • Yang XH, Zhang ZX (1991) Effects of DMSO and glycerol in 35S incorporation of articular cartilage. Cryo-Letters 12:53–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Raiss, R. (2006). Safety Pharmacology of Drugs with Osteoarthritis-Related Activity. In: Vogel, H.G., Hock, F.J., Maas, J., Mayer, D. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29804-5_12

Download citation

Publish with us

Policies and ethics