Skip to main content

The Genus Lactococcus

  • Reference work entry
The Prokaryotes

Introduction

The importance of lactococci in the development of basic microbiology, genetics, molecular biology, general microbial biochemistry, food science, and biotechnology has been profound. Their present-day large-scale use in industrial fermentations, especially in the manufacture of dairy products has particular significance.

The first studies of the lactococci were by Joseph Lister (Lister, 1873), who was attempting to prove Pasteur’s germ theory of fermentative changes. In Lister’s experiments with boiled milk as a nutrient medium, he obtained by chance the first pure bacterial culture. It is worthwhile to recall in the context of this handbook his original discussion of this discovery, marking the dawn of bacterial taxonomy:

Admitting then that we had here to deal with only one bacterium, it presents such peculiarities both morphologically and physiologically as to justify us, I think, in regarding it a definite and recognizable species for which I venture to suggest the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aguirre, M., and M. D. Collins. 1993 Lactic acid bacteria and human clinical infection J. Appl. Bacteriol. 75 95–107

    PubMed  CAS  Google Scholar 

  • Allen, L. K., W. E. Sandine, and P. R. Elliker. 1963 Transduction of lactose metabolism in Streptococcus lactis J. Dairy Res. 30 351–357

    CAS  Google Scholar 

  • Anderson, A. W., and P. R. Elliker. 1953 The nutritional requirements of lactic streptococci isolated from starter cultures. I: Growth in a synthetic medium J. Dairy Sci. 36 161–167

    CAS  Google Scholar 

  • Andresen, A., A. Geis, U. Krusch, and M. Teuber. 1984 Plasmid profiles of mesophilic dairy starter cultures Milchwissenschaft 39 140–143

    Google Scholar 

  • Barach, J. T. 1979 Improved enumeration of lactic acid streptococci on Elliker agar containing phosphate Appl. Environ. Microbiol. 38 173–l74

    PubMed  CAS  Google Scholar 

  • Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992 Tryptophan biosynthesis genes in Lactococcus lactis subsp. lactis J. Bacteriol. 174 6563–6570

    PubMed  CAS  Google Scholar 

  • Bauer, S., A. Tholen, J. Overmann, and A. Blume. 2000 Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques Arch. Microbiol. 173 126–137

    PubMed  CAS  Google Scholar 

  • Beimfohr, C., A. Krause, R. Amann, W. Ludwig, and K.-H. Schleifer. 1993 In situ identification of lactococci, enterococci and streptococci Syst. Appl. Microbiol. 16 450–456

    Google Scholar 

  • Betzl, D., W. Ludwig, and K.-H. Schleifer. 1990 Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes Appl. Environ. Microbiol. 56 2927–2929

    PubMed  CAS  Google Scholar 

  • Bolotin, A., S. Manger, K. Malarme, S. D. Ehrlich, and A. Sorokin. 1999 Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome Ant. v. Leeuwenhoeck 76 27–76

    CAS  Google Scholar 

  • Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin. 2001 The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403 Genome Res. 11 731–753

    PubMed  CAS  Google Scholar 

  • Braun Jr., V., S. Hertwig, H. Neve, A. Geis, and M. Teuber. 1989 Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles J. Gen. Microbiol. 135 2551–2560

    CAS  Google Scholar 

  • Brüssow, H. 2001 Phages of dairy bacteria Ann. Rev. Microbiol. 55 283–303

    Google Scholar 

  • Buchman, G. W., S. Banerjee, and J. N. Hansen. 1988 Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic J. Biol. Chem. 263 16260–16266

    PubMed  CAS  Google Scholar 

  • Budde-Niekiel, A., V. Möller, J. Lembke, and M. Teuber. 1985 Oekologie von Phagen in einer Frischkäserei Milchwissenschaft 40 477–481

    Google Scholar 

  • Budde-Niekiel, A., and M. Teuber. 1987 Electron microscopy of the adsorption of bacteriophages to lactic acid streptococci Milchwissenschaft 42 551–554

    Google Scholar 

  • Buist, G. 1997 AcmA of Lactococcus lactis, a Cell-binding Major Autolysin (Ph.D. thesis) University of Groningen Haren The Netherlands 1–125

    Google Scholar 

  • Chopin, A., A. Borodin, A. Sorokin, S. D. Ehrlich, and M.-C. Chopin. 2001 Analysis of six prophages in Lactococcus lactis IL1403: Different genetic structure of temperate and virulent phage populations Nucleic Acid Res. 29 644–651

    PubMed  CAS  Google Scholar 

  • Christensen, J. E., E. G. Dudley, J. A. Pederson, and J. L. Steele. 1999 Peptidases and amino acid catabolism in lactic acid bacteria Ant. v. Leeuwenhoek 76 217–246

    CAS  Google Scholar 

  • Cogan, T. M., and J.-P. Accolas. 1996 Dairy Starter Cultures Verlag Chemie Publishers New York NY

    Google Scholar 

  • Collins, M. D., and D. Jones. 1979 The distribution of isoprenoid quinones in streptococci of serological groups D and N J. Gen. Microbiol. 11 427–433

    Google Scholar 

  • Cords, B. R., L. L. McKay, and P. Guerry. 1974 Extrachromosomal elements in group N streptococci J. Bacteriol. 117 1149–l152

    PubMed  CAS  Google Scholar 

  • Deasy, B. M., M. C. Rea, G. F. Fitzgerald, T. M. Cogan, and T. P. Beresford. 2000 A rapid PCR based method to distinguish between Lactococcus and Enterococcus Syst. Appl. Microbiol. 23 510–522

    PubMed  CAS  Google Scholar 

  • Delorme, C., J. J. Godon, S. D. Ehrlich, and P. Renault. 1993 Gene inactivation in Lactococcus lactis: Histidine biosynthesis J. Bacteriol. 175 4391–4399

    PubMed  CAS  Google Scholar 

  • De Ruyter, P. G. G. A., O. P. Kuiper, and W. M. de Vos. 1996 Controlled gene expression for Lactococcus lactis with the food-grade inducer nisin Appl. Environ. Microbiol. 62 3662–3667

    PubMed  Google Scholar 

  • de Vos, M. W. 1986 Genetic improvement of starter-streptococci by the cloning and expression of a gene coding for a non-bitter proteinase In: E. Magnien (Ed.) Biomolecular Engineering in the European Community Martinus Nijhoff Dordrecht The Netherlands 465–472

    Google Scholar 

  • de Vos, W. M., J. W. M. Mulders, J. R. Siezen, J. Hugenholtz, and O. P. Kuipers. 1992 Properties of nisin Z and the distribution of its gene, nisZ, in Lactococcus lactis Appl. Environ. Microbiol. 59 213–218

    Google Scholar 

  • Dodd, H. M., N. Horn, and M. J. Gasson. 1990 Analysis of the genetic determinant for production of the peptide antibiotic nisin J. Gen. Microbiol. 136 555–566

    PubMed  CAS  Google Scholar 

  • Domenech, A., J. Prieta, J. F. Fernandez-Garayzabal, M. D. Collins, D. Jones, and L. Dominguez. 1993 Phenotypic and phylogenetic evidence for a close relationship between Lactococcus garviae and Enterococcus seriolocida Microbiologia 9 63–68

    PubMed  CAS  Google Scholar 

  • Duwat, P., S. Sourice, B. Cesselin, G. Lamberet, K. Vido, P. Gaudu, Y. Le Loir, F. Violet, P. Loubière, and A. Gruss. 2001 Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival J. Bacteriol. 183 4509–4516

    PubMed  CAS  Google Scholar 

  • Eldar, A., M. Goria, C. Ghittino, A. Zlotkin, and H. Bercovier. 1999 Biodiversity of Lactococcus garviae strains isolated from fish in Europe, Asia and Australia Appl. Environ. Microbiol. 65 1005–1008

    PubMed  CAS  Google Scholar 

  • Elliker, P. R., A. W. Anderson, and G. Hannesson. 1956 An agar medium for lactic acid streptococci and lactobacilli J. Dairy Sci. 39 1611–1612

    Google Scholar 

  • Everson, T. C. 1991 Control of phage in the dairy plant Bull. Int. Dairy Fed. 263 24–28

    Google Scholar 

  • Facklam, R. R., and J. A. Elliot. 1995 Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci Clin. Microbiol. Rev. 8 479–495

    PubMed  CAS  Google Scholar 

  • Food, and Agriculture Organization of the United Nations. 2001 2000 production [{http://apps.fao.org/}{URL: http://apps.fao.org/}]

    Google Scholar 

  • Fitzgerald, G. F., and M. J. Gasson. 1988 In vivo gene transfer systems and transposons Biochimie 70 489–502

    PubMed  CAS  Google Scholar 

  • Franke, C. M. 1998 Topology of type I secretion system for bacteriocins of Lactococcus lactis (PhD thesis) University of Groningen Haren The Netherlands 1–97

    Google Scholar 

  • Galesloot, T. E., E. Hassing, and J. Stadhouders. 1961 Agar media voor het isoleren en tellen van aromabacterien in zuursels Neth. Milk Dairy J. 15 127–l50

    Google Scholar 

  • Gasson, M. J., and F. L. Davies. 1980 High frequency conjugation associated with Streptococcus lactis donor cell aggregation J. Bacteriol. 143 1260–1264

    PubMed  CAS  Google Scholar 

  • Gasson, M. J. 1983 Plasmid complements of Streptococcus lactis NCDO and other lactic streptococci after protoplast-induced curing J. Bacteriol. 154 1–9

    PubMed  CAS  Google Scholar 

  • Gasson, M. J. 1984 Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712 FEMS Microbiol. Lett. 21 7–10

    CAS  Google Scholar 

  • Gasson, M. J. 1990 In vivo genetic systems in lactic acid bacteria FEMS Microbiol. Rev. 87 43–60

    CAS  Google Scholar 

  • Geis, A. 1982 Transfection of protoplasts of Streptococcus lactis subsp. diacetylactis FEMS Microbiol. Lett. 15 119–122

    Google Scholar 

  • Geis, A., J. Singh, and M. Teuber. 1983 Potential of lactic streptococci to produce bacteriocin Appl. Environ. Microbiol. 45 205–211

    PubMed  CAS  Google Scholar 

  • Geis, A., T. Janzen, M. Teuber, and F. Wirsching. 1992 Mechanism of plasmid-mediated bacteriophage resistance in lactococci FEMS Microbiol. Lett. 94 7–14

    CAS  Google Scholar 

  • Godon, J. J., C. Delorme, J. Bardowski, M. C. Chopin, S. D. Ehrlich, and P. Renault. 1993 Gene inactivation in Lactococcus lactis: Branched-chain amino acid biosynthesis J. Bacteriol. 175 4383–4390

    PubMed  CAS  Google Scholar 

  • Gonzales, C. F., and B. S. Kunka. 1985 Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci Appl. Environ. Microbiol. 49 627–633

    Google Scholar 

  • Griffin, H. G., and M. J. Gasson. 1995 Genetic aspects of aromatic amino acids biosynthesis in Lactococcus lactis Molec. Gen. Genet. 246 119–127

    PubMed  CAS  Google Scholar 

  • Gross, E., and J. L. Morell. 1971 The structure of nisin J. Am. Chem. Soc. 93 4634–4635

    PubMed  CAS  Google Scholar 

  • Haandrikman, A. J., J. Kok, H. Laan, S. Soemitso, A. M. Ledeboer, W. N. Konings, and G. Venema. 1989 Identification of a gene required for the maturation of an extracellular serine proteinase J. Bacteriol. 171 2789–2794

    PubMed  CAS  Google Scholar 

  • Haandrikman, A. J., J. Kok, and G. Venema. 1991 Lactococcal proteinase maturation protein PrtM is a lipoprotein J. Bacteriol. 173 4517–4525

    PubMed  CAS  Google Scholar 

  • Hardie, J. M. 1986 Genus Streptococcus Rosenbach 1884, 22 In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1043–1071

    Google Scholar 

  • Harlander, S. K. 1987 Transformation of Streptococcus lactis by electroporation In: J. J. Ferretti and R. Curtiss 3rd (Eds.) Streptococcal Genetics American Society for Microbiology Washington DC 229–233

    Google Scholar 

  • Hill, C. 1993 Bacteriophage and bacteriophage resistance in lactic acid bacteria FEMS Microbiol. Lett. 12 87–108

    CAS  Google Scholar 

  • Hirsch, A., and E. Grinsted. 1951 The differentiation of lactic streptococci and their antibiotics J. Dairy Res. 18 198–204

    Google Scholar 

  • Hirsch, A. 1953 The evolution of lactic streptococci J. Dairy Res. 20 290–293

    Google Scholar 

  • Holo, H., and I. F. Nes. 1989 High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media Appl. Environ. Microbiol. 55 3119–3123

    PubMed  CAS  Google Scholar 

  • Holo, H., O. Nilssen, and J. F. Nes. 1991 Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene J. Bacteriol. 173 3879–3887

    PubMed  CAS  Google Scholar 

  • Horn, N., S. Swindell, H. Dodd, and M. J. Gasson. 1991 Nisin biosynthesis genes are encoded by a novel conjugative transposon Molec. Gen. Genet. 228 129–135

    PubMed  CAS  Google Scholar 

  • Jarvis, A. W., and J. M. Wolff. 1979 Grouping of lactic streptococci by gel electrophoresis of soluble cell extracts Appl. Environ. Microbiol. 37 391–398

    PubMed  CAS  Google Scholar 

  • Jarvis, A. W., G. F. Fitzgerald, M. Mata, A. Mercenier, H. Neve, I. B. Powell, C. Ronda, M. Saxelin, and M. Teuber. 1991 Species and type phages of lactococcal bacteriophages Intervirology 32 2–9

    PubMed  CAS  Google Scholar 

  • Jensen, P. R., and K. Hammer. 1993 Minimal requirements for exponential growth of Lactococcus lactis Appl. Environ. Microbiol. 59 4363–4366

    PubMed  CAS  Google Scholar 

  • Jung, G. 1991 Lantibiotics: A survey In: G. Jung and H. G. Sahl (Eds.) Nisin and Novel Lantibiotics Escom Leiden The Netherlands 1–34

    Google Scholar 

  • Kaletta, C., and K. D. Entian. 1989 Nisin, a peptide antibiotic: Cloning and sequencing of the nisA gene and posttranslational processing of its peptide product J. Bacteriol. 171 1597–1601

    PubMed  CAS  Google Scholar 

  • Kiefer-Partsch, B., W. Bockelmann, A. Geis, and M. Teuber. 1989 Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris Appl. Microbiol. Biotechnol. 31 75–78

    CAS  Google Scholar 

  • Kiwaki, M., H. Ikemura, M. Shimizu-Kadoka, and A. Hirashima. 1989 Molecular characterization of a cell-wall-associated proteinase gene from Streptococcus lactis NCDO 763 Molec. Microbiol. 3 359–369

    CAS  Google Scholar 

  • Klaenhammer, T. R. 1993 Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiol. Rev. 12 39–86

    PubMed  CAS  Google Scholar 

  • Klijn, N., A. H. Weerkamp, and W. M. de Vos. 1995 Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems Appl. Environ. Microbiol. 61 788–792

    PubMed  CAS  Google Scholar 

  • Knittel, M. D. 1965 Genetic homology and exchange in lactic acid streptococci (Ph.D. thesis) Oregon State University Corvallis OR 1–85

    Google Scholar 

  • Kok, J., J. M. B. M. van der Vossen, and G. Venema. 1984 Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli Appl. Environ. Microbiol. 48 726–731

    PubMed  CAS  Google Scholar 

  • Kok, J., and G. Venema. 1988a Genetics of proteinase of lactic acid bacteria Biochimie 70 475–488

    PubMed  CAS  Google Scholar 

  • Kok, J., K. J. Leenhouts, A. J. Haandrikman, A. M. Ledeboer, and G. Venema. 1988b Nucleotide sequence of the cell wall proteinase of Streptococcus cremoris WG2 Appl. Environ. Microbiol. 54 231–238

    PubMed  CAS  Google Scholar 

  • Kok, J., and W. M. de Vos. 1994 The proteolytic system of lactic acid bacteria In: M. J. Gasson and W. M. de Vos (Eds.) Genetic and Biotechnology of Lactic Acid Bacteria Blackie London UK 169–210

    Google Scholar 

  • Kondo, J. K., and L. L. McKay. 1984 Plasmid transformation of Streptococcus lactis protoplasts: Optimization and use in molecular cloning Appl. Environ. Microbiol. 48 252–259

    PubMed  CAS  Google Scholar 

  • Kuhl, S. A., L. D. Larsen, and L. L. McKay. 1979 Plasmid profiles of lactose-negative and proteinase-deficient mutants of Streptococcus lactis C10, ML3, and ML18 Appl. Environ. Microbiol. 37 1193–1195

    PubMed  CAS  Google Scholar 

  • Kunji, E. R. S., J. Mierau, A. Hagting, B. Poolman, and W. N. Konings. 1996 The proteolytic system of lactic acid bacteria Ant. v. Leeuwenhoek 70 87–221

    Google Scholar 

  • Lancefield, R. C. 1933 A serological differentiation of human and other groups of hemolytic streptococci J. Exp. Med. 57 571–595

    PubMed  CAS  Google Scholar 

  • Le Bourgeois, P., M. Lautier, M. Mata, and P. Ritzenthaler. 1992 Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403 J. Bacteriol. 174 6752–6762

    PubMed  Google Scholar 

  • Leenhouts, K., A. Bolhuis, G. Venema, and J. Kok. 1998 Construction of a food-grade multiple-copy integration system for Lactococcus lactis Appl. Environ. Microbiol. 49 417–423

    CAS  Google Scholar 

  • Leenhouts, K., G. Buist, and J. Kok. 1999 Anchoring of proteins to lactic acid bacteria Ant. v. Leeuwenhoek 76 367–376

    CAS  Google Scholar 

  • Lembke, J., U. Krusch, A. Lompe, and M. Teuber. 1980 Isolation and ultrastructure of bacteriophages of group N (lactic) streptococci Zentralbl. Bakteriol. Hyg., I Abt. Orig. C 1 79–91

    Google Scholar 

  • Lembke, J., and M. Teuber. 1981 Inaktivierung von Bakteriophagen durch Desinfektionsmittel Deutsche Molkerei-Zeitung 102 2–6

    Google Scholar 

  • Lister, J. 1873 A further contribution to the natural history of bacteria and the germ theory of fermentative changes Quart. Microbiol. Sci. 13 380–408

    Google Scholar 

  • Löhnis, F. 1909 Die Benennung der Milchsaurebakterien Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. B 22 553–555

    Google Scholar 

  • Lowe, T. M., and S. R. Eddy. 1997 tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequences Nucleic Acid Res. 25 955–964

    PubMed  CAS  Google Scholar 

  • Madsen, S. M., B. Albrechtsen, E. B. Hansen, and H. Israelsen. 1996 Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614 J. Bacteriol. 178 3689–3694

    PubMed  CAS  Google Scholar 

  • Maguin, E., H. Prevost, S. D. Ehrlich, and A. Gruss. 1996 Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria J. Bacteriol. 178 931–935

    PubMed  CAS  Google Scholar 

  • McKay, L. L., B. R. Cords, and K. A. Baldwin. 1973 Transduction of lactose metabolism in Streptococcus lactis C2 J. Bacteriol. 115 810–815

    PubMed  CAS  Google Scholar 

  • Mierau, I., E. R. S. Kunji, G. Venema, and J. Kok. 1997 Casein and peptide degradation in lactic acid bacteria Biotechnol. Genet. Engin. Rev. 14 279–301

    CAS  Google Scholar 

  • Moineau, S., S. Pandian, and T. R. Klaenhammer. 1993 Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry Appl. Environ. Microbiol. 59 197–202

    PubMed  CAS  Google Scholar 

  • Möller, V., and M. Teuber. 1988 Selection and characterization of phage-resistant mesophilic lactococci from mixed-strain dairy starter cultures Milchwissenschaft 43 482–486

    Google Scholar 

  • Mulders, J. W., J. J. Boerrigter, H. S. Rollema, R. J. Siezen, and W. M. de Vos. 1991 Identification and characterization of the lantibiotic nisin Z, a natural nisin variant Eur. J. Biochem. 201 581–584

    PubMed  CAS  Google Scholar 

  • Nes, J. F., D. B. Diep, L. S. HÃ¥varstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996 Biosynthesis of bacteriocine in lactic acid bacteria Ant. v. Leeuwenhoek 70 113–128

    CAS  Google Scholar 

  • Nes, J. F., and H. Holo. 2000 Class II antimicrobial peptides from lactic acid bacteria Biopolymers 55 50–61

    PubMed  CAS  Google Scholar 

  • Neve, H., A. Geis, and M. Teuber. 1984 Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci J. Bacteriol. 157 833–838

    PubMed  CAS  Google Scholar 

  • Neve, H., A. Geis, and M. Teuber. 1987 Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures Syst. Appl. Microbiol. 9 151–157

    CAS  Google Scholar 

  • Neve, H., A. Geis, and M. Teuber. 1988 Plasmid-encoded functions of ropy lactic acid streptococcal strains from Scandinavian fermented milk Biochimie 70 437–442

    PubMed  CAS  Google Scholar 

  • Neve, H., and M. Teuber. 1991 Basic microbiology, and molecular biology of bacteriophage of lactic acid bacteria in dairies Bull. Int. Dairy Fed. 263 3–15

    CAS  Google Scholar 

  • Nickels, C., and H. Leesment. 1964 Methode zur Differenzierung und quantitativen Bestimmung von Säureweckerbakterien Milchwissenschaft 19 374–378

    Google Scholar 

  • Nissen-Meyer, J., H. Holo, L. S. HÃ¥varstein, K. Sletten, and J. F. Nes. 1992 A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides J. Bacteriol. 174 5686–5692

    PubMed  CAS  Google Scholar 

  • Norton, P. M., R. W. F. LePage, and J. M. Wells. 1995 Progress in the developement of Lactococcus lactis as a recombinant mucosal vaccine delivery system Folia Microbiol. 40 225–230

    CAS  Google Scholar 

  • Norton, P. M., H. W. G. Brown, J. M. Wells, A. M. Macpherson, P. W. Wilson, and R. W. F. LePage. 1996 Factors affecting the immunogenicity of tetanusd toxin fragment C expressed in Lactococcus lactis FEMS Immunol. Med. Microbiol. 14 167–177

    PubMed  CAS  Google Scholar 

  • Olson, N. F., R. E. Anderson., and R. Sellars. 1978 Microbiological methods for cheese and other cultured products In: E. H. Marth (Ed.) Standard Methods for the Examination of Dairy Products, 14th ed American Public Health Association Washington DC 161–164

    Google Scholar 

  • Orla-Jensen, S. 1919 In: The Lactic Acid Bacteria Host & Son Copenhagen Denmark

    Google Scholar 

  • O’Sullivan, D. J., S. A. Walker, S. G. West, and T. R. Klaenhammer. 1996 Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression Bio/Technol. 14 82–87

    Google Scholar 

  • Pechmann, H., and M. Teuber. 1980 Plasmid pattern of group N (lactic) streptococci Zentralbl. Bakteriol. Int. J. Mikrobiol. Hyg., Abt. 1 Orig. C 1 133–136

    Google Scholar 

  • Perreten, V., F. Schwarz, L. Cresta, M. Boeglin, G. Dasen, and M. Teuber. 1997 Antibiotic resistance spread in food Nature 389 801–802

    PubMed  CAS  Google Scholar 

  • Perreten, V., F. V. Schwarz, M. Teuber, and S. B. Levy. 2001 Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli Antimicrob. Agents Chemother. 45 1109–1114

    PubMed  CAS  Google Scholar 

  • Piard, J. C., I. Hauteford, V. A. Fischetti, S. D. Ehrlich, M. Fons, and A. Gruss. 1997 Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria J. Bacteriol. 179 3068–3072

    PubMed  CAS  Google Scholar 

  • Poquet, I., S. D. Ehrlich, and A. Gruss. 1998 An export-specific reporter designed for Gram-positive bacteria: Application to Lactococcus lactis J. Bacteriol. 180 1904–1912

    PubMed  CAS  Google Scholar 

  • Pot, B., L. A. Devriese, D. Ursi, P. Vandamme, F. Haesebrouck, and K. Kersters. 1996 Phenotypic identification and differentiation of Lactococcus strains isolated from animals Syst. Appl. Microbiol. 19 213–222

    CAS  Google Scholar 

  • Powell, I. B., M. G. Achen, A. J. Hillier, and B. E. Davidson. 1988 A simple and rapid method for genetic transformation of lactic streptococci by electroporation Appl. Environ. Microbiol. 54 655–660

    PubMed  CAS  Google Scholar 

  • Prichard, G. G., and T. Coolbear. 1993 The physiology and biochemistry of the proteolytic system in lactic acid bacteria FEMS Microbiol. Lett. 12 179–206

    Google Scholar 

  • Rauch, P. J. G., M. M. Beerthuyzen, and W. M. de Vos. 1990 Nucleotide sequence of IS904 from Lactococcus lactis subspl. lactis strain NIZO R5 Nucleic Acid Res. 18 4253–4254

    PubMed  CAS  Google Scholar 

  • Rauch, P. J. G., and W. M. de Vos. 1992 Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis J. Bacteriol. 174 1280–1287

    PubMed  CAS  Google Scholar 

  • Robinson, K., L. M. Chamberlain, K. M. Schofield, J. K. Wells, and R. W. F. LePage. 1997 Oral vaccination of mice against tetanus with recombinant Lactococcus lactis Nature Biotechnol. 15 653–657

    CAS  Google Scholar 

  • Sahl, H. G., M. Kordel, and R. Benz. 1987 Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin Arch. Microbiol. 149 120–124

    PubMed  CAS  Google Scholar 

  • Sakala, R. M., H. Hayashidani, Y. Kato, T. Hirata, Y. Makino, A. Fukishima, T. Yamada, C. Kaneuchi, and M. Ogawa. 2002 Change in composition of the microflora on vacuum-packed beef during chiller storage Int. J. Food Microbiol. 74 87–99

    PubMed  Google Scholar 

  • Salama, M., W. Sandine, and S. Giovannoni. 1991 Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris Appl. Environm. Microbiol. 57 1313–1318

    CAS  Google Scholar 

  • Salama, M. S., W. E. Sandine, and S. J. Giovannoni. 1993 Insolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes Appl. Environ. Microbiol. 59 3941–3945

    PubMed  CAS  Google Scholar 

  • Sandine, W. E., C. Radich, and P. R. Elliker. 1972 Ecology of lactic streptococci: A review J. Milk Food Technol. 35 176–184

    Google Scholar 

  • Sandine, W. E. 1996 Commercial production of dairy starter cultures In: T. M. Cogan and J.-P. Accolas (Eds.) Dairy Starter Cultures VCH Publishers New York NY 191–206

    Google Scholar 

  • Schleifer, K. H., J. Kraus, G. Dvorak, R. Kilpper-Balz, M. D. Collins, and W. Fischer. 1985 Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov Syst. Appl. Microbiol. 6 183–195

    CAS  Google Scholar 

  • Shankar, P. A., and E. L. Davies. 1977 A note on the suppression of Lactobacillus bulgaricus in media containing β-glycerophosphate and application of such media to selective isolation of Streptococcus thermophilus from yoghurt J. Dairy Technol. 30 8–30

    Google Scholar 

  • Siezen, R. J. 1999 Multi-domain, cell-envelope proteinases of lactic acid bacteria Ant. v. Leeuwenhoek 76 139–155

    CAS  Google Scholar 

  • Simon, D., A. Rouault, and M.-C. Chopin. 1986 High-efficiency transformation of Streptococcus lactis protoplasts by plasmid DNA Appl. Environ. Microbiol. 52 394–395

    PubMed  CAS  Google Scholar 

  • Simon, D., and A. Chopin. 1988 Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis Biochimie 70 559–566

    PubMed  CAS  Google Scholar 

  • Sorensen, K. J., R. Larsen, A. Kibenich, M. P. Junge, and E. Johansen. 2000 A food-grade cloning system for industrial strains of Lactococcus lactis Appl. Environ. Microbiol. 66 1253–1258

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and M. Teuber. 1988 Molecular taxonomy and phylogenetic position of lactic acid bacteria Biochimie 70 317–324

    PubMed  CAS  Google Scholar 

  • Stadhouders, J., and G. J. M. Leenders. 1984 Spontaneous development mixed-strain cheese-starters: Their behaviour towards phages and their use in the Dutch cheese industry Neth. Milk Dairy J. 38 157–181

    Google Scholar 

  • Steele, J. L., and L. L. McKay. 1986 Partial characterization of the genetic basis for sucrose metabolism and nisin production Appl. Environ. Microbiol. 51 57–64

    PubMed  CAS  Google Scholar 

  • Steidler, L., J. Viaene, W. Fiers, and E. Remaut. 1998 Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A Appl. Environ. Microbiol. 65 342–345

    Google Scholar 

  • Tailliez, P. 2001 Mini-revue: Les bactéries lactiques, ces etre vivants apparus il y a près de 3 milliards d’années Lait 81 1–11

    CAS  Google Scholar 

  • Terzaghi, B. E., and W. E. Sandine. 1975 Improved medium for lactic streptococci and their bacteriophages Appl. Microbiol. 29 807–813

    PubMed  CAS  Google Scholar 

  • Teuber, M., and J. Lembke. 1983 The bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci Ant. v. Leeuwenhoek 49 283–295

    CAS  Google Scholar 

  • Teuber, M., A. Geis, U. Krusch, and J. Lembke. 1994 Biotechnologische Verfahren zur Herstellung von Lebensmitteln und Futtermitteln In: P. Präve, U. Faust, W. Sittig, and D. A. Sukatsch (Eds.) Handbuch der Biotechnologie, 4th ed Oldenbourg Verlag Munich Germany 479–540

    Google Scholar 

  • Teuber, M. 1995 The Genus Lactococcus In: B. J. B. Wood and W. H. Holzapfel (Eds.) The Genera of Lactic Acid Bacteria Blackie London UK 173–234

    Google Scholar 

  • Teuber, M., L. Meile, and F. Schwarz. 1999 Aquired antibiotic resistance in lactic acid bacteria from food Ant. v. Leeuwenhoek 76 115–137

    CAS  Google Scholar 

  • Teuber, M. 2000 Fermented milk products In: B. M. Lund, T. C. Baird-Parker, and G. W. Gould (Eds.) The Microbiological Safety and Quality of Food Aspen Publishers Gaitherburg MD 1 535–589

    Google Scholar 

  • Thomas, T. D., and G. G. Pritchard. 1987 Proteolytic enzymes of dairy starter cultures FEMS Microbiol. Rev. 46 245–268

    CAS  Google Scholar 

  • Thompson, J., N. Y. Nguyen, D. L. Sackett, and J. A. Donkersloot. 1991 Transposon-encoded sucrose metabolism in Lactococcus lactis J. Biol. Chem. 266 14573–14579

    PubMed  CAS  Google Scholar 

  • van Belkum, M. J., B. J. Hayema, A. Geis, J. Kok, and G. Venema. 1989 Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid Appl. Environ. Microbiol. 55 1187–1191

    PubMed  Google Scholar 

  • van Belkum, M. J., B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema. 1991 Organization and nucleotide sequence of two lactococcal bacteriocin operons Appl. Environ. Microbiol. 57 492–498

    PubMed  Google Scholar 

  • van Belkum, M. J., J. Kok, and G. Venema. 1992 Cloning, sequencing and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal plasmid p9B4-6 Appl. Environ. Microbiol. 58 572–577

    PubMed  Google Scholar 

  • van der Guchte, M., J. M. B. M. van der Vossen, J. Kok, and G. Venema. 1989 Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis Appl. Envir. Microbiol. 55 224–228

    Google Scholar 

  • van der Vossen, J. M. B. M., J. Kok, and G. Venema. 1985 Construction of cloning, promoter-screening and terminator-screening shuttle vectors for Bacillus subtilis and Streptococcus lactis Appl. Environ Microbiol. 50 540–542

    PubMed  Google Scholar 

  • van Kranenburg, R., H. R. Vos, J. J. van Swam, M. Kleerebezem, and W. M. de Vos. 1999 Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci: Complementation, expression, and diversity J. Bacteriol. 181 6247–6253

    Google Scholar 

  • Van Kranenburg, R., M. Kleerebezem, and W. M. de Vos. 2000 Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000 Plasmid 43 130–136

    PubMed  Google Scholar 

  • van Rooijen, R. J., and W. M. de Vos. 1990 Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system in Lactococcus lactis J. Biol. Chem. 265 8499–18503

    Google Scholar 

  • van Rooijen, R. J., S. van Schalkwijk, and W. M. de Vos. 1991 Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis J. Biol. Chem. 266 7176–7181

    PubMed  Google Scholar 

  • van Rooijen, R. J., M. J. Gasson, and W. M. de Vos. 1992 Characterization of the Lactococcus lactis lactose operon promoter: Contribution of flanking sequences and LacR repressor to promoter activity J. Bacteriol. 174 2273–2280

    PubMed  Google Scholar 

  • Vedamuthu, E. R., and J. M. Neville. 1986 Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris Appl. Environ. Microbiol. 51 677–682

    PubMed  CAS  Google Scholar 

  • Vela, A. I., J. Vazquez, A. Gibello, M. M. Blanco, M. A. Moreno, P. Liébana, C. Albendea, B. Alcala, A. Mendez, L. Dominguez, and J. F. Fernandez-Garayazabal. 2000 Phenotypic and genetic characterization of Lactococcus garviae isolated in Spain from lactococcosis outbreaks and comparison withn isolates of other countries and sources J. Clin. Microbiol. 38 3791–3795

    PubMed  CAS  Google Scholar 

  • Vesa, T., P. Pochart, and P. Marteau. 2000 Pharmacokinetics of Lactobacillus plantarum NCIMB8826, Lactobacillus fermenetum KLD, and Lactococcus lactis MG1363 in the human gastrointestinal tract Aliment. Pharmacol. Ther. 14 823–828

    PubMed  CAS  Google Scholar 

  • Visser, S., F. A. Exterkate, C. J. Slangen, and G. J. C. M. De Veer. 1986 Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αs1-, β-and κ-casein Appl. Environ. Microbiol. 52 1162–1166

    PubMed  CAS  Google Scholar 

  • Vogensen, E. K., T. Karst, J. J. Larsen, B. Kringelum, D. Ellekjaer, and E. Waagner Nielsen. 1987 Improved direct differentiation between Leuconostoc cremoris, Streptococcus lactis and Streptococcus cremoris/Streptococcus lactis on agar Milchwissenschaft 42 646–648

    Google Scholar 

  • von Wright, A., and S. Tynkkynen. 1987 Construction of Streptococcus lactis sup. lactis strains with a single plasmid associated with mucoid phenotype Appl. Environ. Microbiol. 53 1385–1386

    Google Scholar 

  • Walsh, P. M., and L. L. McKay. 1981 Recombinant plasmid associated with cell aggregation and high frequency conjugation of Streptococcus lactis ML3 J. Bacteriol. 146 937–944

    PubMed  CAS  Google Scholar 

  • Weigmann, H. 1905–1908 Das Reinzuchtsystem in der Butterbereitung und in der Käserei In: E. Lafar (Ed.) Handbuch der Technischen Mykologie. Volume 2: Mykologie der Nahrugsmittelgewerbe Gustav Fischer Verlag Jena Germany 293–309

    Google Scholar 

  • Weiler, H. G., and E. Radler. 1970 Milchsäurebakterien aus Wein und von Rebenblättern Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg., Abt. 2 Orig. 124 707–732

    Google Scholar 

  • Whittenbury, R. 1965 The enrichment and isolation of lactic acid bacteria from plant material Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg., Abt. 1 Suppl. 1 395–398

    Google Scholar 

  • Williams, A. M., J. L. Fryer, and M. D. Collins. 1990 Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish FEMS Microbiol. Lett. 68 109–114

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Teuber, M., Geis, A. (2006). The Genus Lactococcus. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_7

Download citation

Publish with us

Policies and ethics