Skip to main content

An Introduction to the Family Clostridiaceae

  • SECTION 1.2 Firmicutes with Low GC Content of DNA
  • Reference work entry
The Prokaryotes

Introduction

The pre-16S rRNA sequence definition of the genus Clostridium was—non-sulfate-reducing sporeformer relying obligately on anaerobic energy metabolism and with a Gram-positive type cell wall (Hippe et al., 1992). Our view of bacterial classification has greatly changed in the past 10 years. We now define the overall taxonomic structure of the prokaryotes, for the most part, on the basis of relationships revealed by comparison of 16S rRNA gene sequences. This has lead to transferring many former clostridial species to novel genera and to a more narrow definition of the genus Clostridium (further referred to as Clostridium sensu stricto), encompassing much fewer species but including the majority of the medically important species.

Phylogeny

The recent release of the second edition of Bergey’s Manual of Systematic Bacteriologytakes the bold step of proposing a taxonomic structure for all validly described prokaryotes on the basis of a 16S rRNA gene sequence phylogeny. This...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Abraham, L. J., A. J. Wales, and J. L. Rood. 1985 Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid pCW3 Plasmid 14 37–46

    PubMed  CAS  Google Scholar 

  • Adkins, J. P., L. A. Cornell, and R. S. Tanner. 1992 Microbial composition of carbonate petroleum reservoir fluids Geomicrobiol. J. 10 87–97

    Google Scholar 

  • Allen, S. P., and H. P. Blaschek. 1988 Electroporation-induced transformation of intact cells of Clostridium perfringens Appl. Environ. Microbiol. 54 2322–2324

    PubMed  CAS  Google Scholar 

  • Andreesen, J. R. 2004 Degradation of heterocyclic compounds In: Peter Dürre (Ed.) Clostridia Plenum Publishing Corporation New York NY 324

    Google Scholar 

  • Angert, E. R., and M. R. Losick. 1998 Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora PNAS (USA) 95 10218–10223

    CAS  Google Scholar 

  • Antranikian, G., C. Herzberg, F. Mayer, and G. Gottschalk. 1987 Changes in the cell envelope of Clostridium sp. strain EM1 during massive production of a-amylase and pullulanase FEMS Microbiol. Lett. 41 193–197

    CAS  Google Scholar 

  • Atlas, R. M., and L. C. Parks. 1997 Handbook of Microbiological Media, 2nd ed CRC Press Boca Raton FL

    Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791

    PubMed  CAS  Google Scholar 

  • Balch, W. E., L. J. Magrum, G. E. Fox, R. S. Wolfe, and C. R. Woese. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 260–296

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., and R. Lamed. 1986 Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose J. Bacteriol. 167 828–836

    PubMed  CAS  Google Scholar 

  • Bayer, E. A., E. Morag, and R. Lamed. 1994 The cellulosome: A treasure-trove for biotechnology Trends Biotechnol. 12 378–386

    Google Scholar 

  • Boone, D., R. Castenholz, and G. Garrity (Eds.). 2001 Bergey’s Manual of Systematic Bacteriology Springer-Verlag New York NY 1

    Google Scholar 

  • Bramucci, M. G., K. M. Keggins, and P. S. Lovett. 1977 Bacteriophage PMB12 conversion of sporulation defect in RNA-polymerase mutants of Bacillus subtilis J. Virol. 24 194–200

    PubMed  CAS  Google Scholar 

  • Breitenstein, A., J. Wiegel, C. Härtig, N. Weiß, J. R. Andreesen, and U. Lechner. 2001 Description of Sedimentibacter saalensis ZF2 gen. nov., sp. nov. and reclassification of Clostridium hydroxybenzoicum JW/Z-1T as Sedimentibacter hydroxybenzoicus JW/Z-1T gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 52 801–807

    Google Scholar 

  • Brill, J., and J. Wiegel. 1997 Differentiation between sporeforming and asporogenenic bacteria by a PCR and Southern hybridization based method J. Microbiol. Meth. 31 29–36

    CAS  Google Scholar 

  • Broda, D. M., D. J. Saul, R. G. Bell, and D. R. Musgrave. 2000 Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan degrading, spore forming bacterium Int. J. Syst. Evol. Microbiol. 50 623–631

    PubMed  CAS  Google Scholar 

  • Bruggemann, H., S. Baumer, W. F. Fricke, A. Wiezer, H. Lieseegang, I. Decker, C. Herzberg, R. Martinez-Arias, R. Merkl, A. Henne, and G. Gottschalk. 2003 The genome sequence of Clostridium tetani, the causative agent of tetanus disease Proc. Natl. Acad. Sci. USA 100 1316–1321

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1972 Commentary of the Hungate technique for culture of anaerobic bacteria Am. J. Clin. Nutr. 25 1324–1328

    PubMed  CAS  Google Scholar 

  • Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000 Novel Strains of Moorella thermoacetica form unusually heat resistant spores Arch. Microbiol. 174 334–339

    PubMed  CAS  Google Scholar 

  • Canale-Parola, E., R. Barasky, and R. S. Wolfe. 1961 Studies on Sarcina ventriculi. III: Localization of cellulose J. Bacteriol. 81 311–318

    PubMed  CAS  Google Scholar 

  • Canale-Parola, E. 1970 Biology of the sugar fermenting sarcina Bacteriol. Rev. 34 82–97

    PubMed  CAS  Google Scholar 

  • Canganella, F., and J. Wiegel. 1999 Cultivation of Clostridium thermobutyricum in a rotary fermentor system J. Indust. Microbiol. Biotechnol. 24 7–13

    Google Scholar 

  • Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium Prazmowski 1880, 23AL In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1141–1200

    Google Scholar 

  • Cho, K. Y., and C. H. Doy. 1973 Ultrastructure of the obligately anaerobic bacteria Clostridium kluyveri and C. acetobutylicum Austral. J. Biol. Sci. 26 547–558

    CAS  Google Scholar 

  • Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandes-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826

    PubMed  CAS  Google Scholar 

  • Cook, G. M., P. H. Janssen, and H. W. Morgan. 1991 Endospore formation by Thermoanaerobium brockii HTD4 Syst. Appl. Microbiol. 12 240–244

    Google Scholar 

  • De la Maza, L. M., M. T. Pezzlo, J. T. Shigei, and E. M. Peterson. 2004 Color Atlas of Medical Bacteriology ASM Press Herndon VA

    Google Scholar 

  • Demain, A. L., and J. E. Davies (Eds.). 2000 Manual of Industrial Microbiology and Biotechnology, 2nd. ed ASM Press Washington DC

    Google Scholar 

  • Desai, R. P., and E. T. Papoutsakis. 1999 Antisense RNA strategies for the metabolic engineering of Clostridium acetobutylicum Appl. Environ. Microbiol. 65 936–945

    PubMed  CAS  Google Scholar 

  • Doi, R. H., A. Ksugi, K. Murashima, Y. Tamaru, and S. O. Han. 2003 Cellulosomes from mesophilic bacteria J. Bacteriol. 185 5907–5914

    PubMed  CAS  Google Scholar 

  • Dorner, C., and B. Schink. 1990 Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-hydroxybutyrate, 3-hydroxybutyrate, or 4-hydroxybutyrate Arch. Microbiol. 154 342–348

    PubMed  CAS  Google Scholar 

  • Drake, H. L. 1994 Acetogenesis Chapman & Hall New York NY

    Google Scholar 

  • Dürre, P., W. Andersch, and J. R. Andreesen. 1981 Isolation and characterization of an adenine-utilizing anaerobic sporeformer, Clostridium purinolyticum sp. nov Int. J. Syst. Bacteriol. 31 184–194

    Google Scholar 

  • Dürre, P. 2001 From Pandora’s box to cornucopia: Clostridia—a historical perspective In: P. Dürre (Ed.) Clostridia: Biotechnology and Medical Application Wiley-VCH New York NY 2–17

    Google Scholar 

  • Dürre, P. (Ed.). 2004 Handbook on Clostridia CRC Press Boca Raton FL

    Google Scholar 

  • Engle, M., Y. Li, F. Rainey, S. DeBlois, V. Mai, A. Reichert, F. Mayer, P. Messmer, and J. Wiegel. 1996 Thermobrachium celere, gen. nov., sp. nov., a fast growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe Int. J. Syst. Bacteriol. 46 1025–1033

    PubMed  CAS  Google Scholar 

  • Escheman, A., M. Kühl, and H. Cypionka. 1999 Aerotaxis in Desulfovibrio Environ. Microbiol. 1 489–494

    Google Scholar 

  • Felsenstein, J. 1993 PHYLIP (Phylogenetic Inference Package) Version 3.5.1 Department of Genetics, University of Washington Seattle WA

    Google Scholar 

  • Freier, D., C. P. Mothershed, and J. Wiegel. 1988 Clostridium thermocellum characterization of strain JW20 Appl. Environ. Microbiol. 54 104–111

    Google Scholar 

  • Good, N. E., G. D. Winget, W. Winter, T. N. Connolloy, S. Izawaw, and R. M. M. Singh. 1966 Hydrogen ion buffers for biological research Biochemistry 5 467–477

    PubMed  CAS  Google Scholar 

  • Gottschal, J. C., W. Harder, and R. A. Prins. 1992 Principles of enrichment, isolation, cultivation, and preservation of bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W., Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York NY 1 149–196

    Google Scholar 

  • Gottschalk, G. 1986 Bacterial Metabolism Springer-Verlag New York NY

    Google Scholar 

  • Hermann, M., K. M. Noll, and R. S. Wolfe. 1986 Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere Appl. Environ. Microbiol. 51 1124–1126

    PubMed  CAS  Google Scholar 

  • Hespell, R. B. 1990 Isolation of anaerobic microorganisms In: D. P. Labeda (Ed.) Isolation of Biotechnological Organisms from Nature McGraw-Hill New York NY 117–140

    Google Scholar 

  • Hippe, H., J. R. Andreesen, and G. Gottschalk. 1992 The Genus Clostridium–nonmedical In: A. Balows, H. G. Trüper, M. Dworkin, W., Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York NY 4 1800–1866

    Google Scholar 

  • Hoch, J. A. Control of cellular developments in sporulating bacteria bythe phosphorelay two component signal transduction system In: J. A. Hoch and T. J. Silhavy (Eds.) Two Component Signal Transduction ASM Press Washington DC

    Google Scholar 

  • Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977 Anaerobe Laboratory Manual, 4th ed V.P.I. Anaerobic Laboratory, Virginia Polytechnic Institute and State University Blacksburg VA

    Google Scholar 

  • Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 3B 117–132

    Google Scholar 

  • Hutson, R. A., D. E. Thompson, P. A. Lawson, R. P. Schocken-Itturino, E. C. Bottger, and M. D. Collins. 1993 Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences Ant. v. Leeuwenhoek 64 273–283

    CAS  Google Scholar 

  • Johnson, J. L., and B. S. Francis. 1975 Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species J. Gen. Microbiol. 88 229–244

    PubMed  CAS  Google Scholar 

  • Johnson, J. L., and J. S. Chen. 1995 Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms FEMS Microbiol. Rev. 17 233–240

    CAS  Google Scholar 

  • Jones, D. T., and S. Keis. 1995 Origins and relationships of industrial solvent-producing clostridial strains FEMS Microbiol. Rev. 17 223–232

    CAS  Google Scholar 

  • Kaiser, J. P., Y. Feng, and J. M. Bollag. 1996 Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions Microbiol. Rev. 60 483–498

    PubMed  CAS  Google Scholar 

  • Kandler, O., H. König, J. Wiegel, and D. Claus. 1982 Occurrence of poly-D-glutamic acid and poly-L-glutamine in the genera Xanthobacter, Flexithrix, Sporosarcina, and Planococcus System. Appl. Microbiol. 4 34–41

    Google Scholar 

  • Kawasaki, S., J. Ishikura, D. Chiba, T. Nishino, and Y. Niimura. 2004 Purification and characterization of an H2 forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligae anaerobic bacterium Arch. Microbiol. 181 324–330

    PubMed  CAS  Google Scholar 

  • Koransky, J. R., S. D. Allen, and V. R. Dowell Jr. 1978 Use of ethanol for selective isolation of sporeforming microorganisms Appl. Environ. Microbiol. 35 762–765

    PubMed  CAS  Google Scholar 

  • Kühner, C. H., C. Matthies, G. Acker, M. Schmittroth, A. S. Gossner, and H. L. Drake. 2000 Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: Acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter Int. J. Syst. Evol. Microbiol. 50 873–881

    PubMed  Google Scholar 

  • Labbe, R. G., and N.-J. R. Shih. 1997 Physiology of sporulation of clostridia In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press New York NY 21–32

    Google Scholar 

  • Lawson, P. A., P. Llop-Perez, R. A. Hutson, H. Hippe, and M. D. Collins. 1993 Towards a phylogeny of the clostridia based on 16S rRNA sequences FEMS Microbiol. Lett. 113 87–92

    PubMed  CAS  Google Scholar 

  • Lee, Y. E., M. K. Jain, C. Lee, S. E. Lowe, and J. G. Zeikus. 1993 Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus Int. J. Syst. Bacteriol. 43 41–51

    Google Scholar 

  • Li, Y., L. Mandelco, and J. Wiegel. 1993 Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov Int. J. Syst. Bacteriol. 43 450–460

    Google Scholar 

  • Li, Y., M. Engle, L. Mandelco, and J. Wiegel. 1994 Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile Int. J. Syst. Bacteriol. 44 111–118

    PubMed  CAS  Google Scholar 

  • Line, M. A., and M. W. Loutit. 1973 Nitrogen fixation by mixed cultures of aerobic and anaaerobic microorganisms in an aerobic environment J. Gen. Microbiol. 74 179–180

    CAS  Google Scholar 

  • Ljungdahl, L. G., and J. Wiegel. 1986 Anaerobic fermentations In: A. L. Demain and N. A. Solomon (Eds.) Manual of Industrial Microbiology and Biotechnology ASM Press Washington DC 84–96

    Google Scholar 

  • Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989a Acetogenic and acid producing clostridia In: N. P. Minton and D. J. Clarke (Eds.) The Clostridia Plenum Press New York NY 1455–1491

    Google Scholar 

  • Ljungdahl, L. G., J. Hugenholtz, A. Das, and J. Wiegel. 1989b Physiology of clostridial homoacetogens: Autotrophy, energy metabolism and potential for industrial production of acetate In: M. S. Da Costa, J. C. Duarte, and R. A. D. Williams (Eds.) FEMS Symposium, Microbiology of Extreme Environments and its Potential for Biotechnology Elsevier Applied Science New York NY 6–23

    Google Scholar 

  • Long, S., D. T. Jones, and D. R. Woods. 1983 Sporulation of Clostridium acetobutylicum P262 in a defined medium Appl. Environ. Microbiol. 45 1389–1393

    PubMed  CAS  Google Scholar 

  • Lund, B. M., T. F. Brocklehurst, and G. M. Wyatt. 1981 Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium J. Gen. Microbiol. 122 17–26

    Google Scholar 

  • Madkour, M., and F. Mayer. 2003 Structural organization of the intact bacterial cellulosome as revealed by electron microscopy Cell. Biol. Int. 27 831–836

    PubMed  CAS  Google Scholar 

  • Mahony, D. E. 1979 Bacteriocions, bacteriophage and other epidemiological typing methods for the genus Clostridium Meth. Microbiol. 13 1–30

    Google Scholar 

  • Mai, V., and J. Wiegel. 1999 Recombinant DNA applications in thermophiles In: A. L. Demain and J. E. Davis (Eds.), Hershberger (section Ed.) ASM Manual of Industrial Microbiology and Biotechnology, 2nd ed ASM Press Washington DC 511–519

    Google Scholar 

  • Mai, V., and J. Wiegel. 2000 Advances in the development of a genetic system for Thermoanaerobacterium: Expression of genes encoding hydrolytic enzymes, development of a second shuttle vector and integration of genes into the chromosome Appl. Environ. Microbiol. 66 4817–4821

    PubMed  CAS  Google Scholar 

  • Matthies, C., C. H. Kühner, G. Acker, and H. L. Drake. 2001 Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments Int. J. Syst. Evol. Microbiol. 51 1119–1125

    PubMed  CAS  Google Scholar 

  • Mauchline, M. L., T. O. Davis, and N. P. Minton. 2000 Clostridia In: A. L. Demain and J. E. Davies (Eds.) Manual of Industrial Microbiology and Biotechnology, 2nd. ed ASM Press Washington DC 475–490

    Google Scholar 

  • Mayer, F., M. P. Coughlan, Y. Mori, and L. G. Ljungdahl. 1987 Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy Appl. Environ. Microbiol. 53 2785–2792

    PubMed  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039

    PubMed  CAS  Google Scholar 

  • Meinecke, B., H. Bahl, and G. Gottschalk. 1984 Selection of an asporgenous strain of Clostridium acetobutylicum in continuous culture under phosphate limitation Appl. Environ. Microbiol. 48 1064–1065

    PubMed  CAS  Google Scholar 

  • Merchante, R., H. M. Pooley, and D. Karamata. 1995 A periplasm in Bacillus subtilis J. Bacteriol. 177 6176–6183

    PubMed  CAS  Google Scholar 

  • Moore, L. V. H., E. P. Cato, and W. E. C. Moore. 1987 Anaerobe Laboratory Manual, 4th ed V.P.I. Anaerobic Laboratory, Virginia Polytechnic Institute and State University Blackburg VA

    Google Scholar 

  • Murray, W. D., L. Hofmann, N. L. Cambell, and R. H. Madden. 1986 Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper mill waste Syst. Appl. Microbiol. 8 181–184

    Google Scholar 

  • Navarre, W. W., and O. Schneewind. 1999 Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope Microbiol. Molec. Biol. Rev. 63 174–229

    CAS  Google Scholar 

  • Nunoura, T., S. Akiharas, K. Takai, and Y. Sako. 2002 Thermaerobacter nagasakiensis sp. nov., a novel aerobic and extremely thermophilic marine bacterium Arch. Microbiol. 177 339–344

    PubMed  CAS  Google Scholar 

  • O’Brien, J. R., and N. M. George. 1997 A Gram stain paradox: Bacillus circulans misindentified as Pseudomonas paucimobilis Am. J. Med. Sci. 18 11–115

    Google Scholar 

  • Oren, A., H. Pohla, and E. Stackebrandt. 1987 Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov. and description of Sporohalobacter marismortui sp. nov Syst. Appl. Microbiol. 9 239–246

    CAS  Google Scholar 

  • Paster, B. J., J. B. Russell, C. M. J. Yang, J. M. Chow, C. R. Woese, and R. Tanner. 1993 Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov Int. J. Syst. Bacteriol. 43 107–110

    PubMed  CAS  Google Scholar 

  • Pasteur, L. 1861 Animacules infusoires vivant sans gaz oxygene libré et déterminant des fermentations C.R. Acad. Sci. 52 344–347

    Google Scholar 

  • Phillips, R. W., J. Wiegel, C. J. Berry, C. Fliermans, A. D. Peacock, D. C. White, and L. J. Shimkets. 2002 Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram positive bacterium Int. J. Syst. Evol. Microbiol. 52 933–938

    PubMed  CAS  Google Scholar 

  • Popescu, A., and R. J. Doyle. 1996 The Gram stain after more than a century Biotech. Histochem. 71 145–151

    PubMed  CAS  Google Scholar 

  • Postgate, J. R. 1974 New advances and future potential in biological nitrogen fixation J. Appl. Bacteriol. 37 185–202

    PubMed  CAS  Google Scholar 

  • Pusheva, M. A., A. V. Pitryuk, and E. N. Detkova. 1999 Bioenergetics of acetogenesis in the extremely alkaliphilic homoacetogenic bacteria Natroniella acetigena and Natronoincola histidinovorans Microbiology 68 568–573

    CAS  Google Scholar 

  • Rainey, F. A., and E. Stackebrandt. 1993a 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia FEMS Microbiol. Lett. 113 125–128

    PubMed  CAS  Google Scholar 

  • Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster, and E. Stackebrandt. 1993b Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification J. Bacteriol. 175 4772–4779

    PubMed  CAS  Google Scholar 

  • Rogers, P. 1986 Genetics and biochemistry of Clostridium relevant to development of fermentation processes Adv. Appl. Microbiol. 31 1–60

    CAS  Google Scholar 

  • Rood, J. I., B. A. McClane, J. G. Songer, and R. W. Titball. 1997 The Clostridia: Molecular Biology and Pathogenesis Academic Press San Diego CA

    Google Scholar 

  • Sara, M., and U. B. Sleytr. 2000 S-layer proteins J. Bacteriol. 182 859–868

    PubMed  CAS  Google Scholar 

  • Sara, M. 2001 Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria? Trends Microbiol. 9 47–49

    PubMed  CAS  Google Scholar 

  • Schleifer, K.-H., and O. Kandler. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriol. Rev. 36 407–477

    PubMed  CAS  Google Scholar 

  • Schmitz, R. A., R. Daniel, U. Deppenmeier, and G. Gottschalk. 2004 The anaerobic way of life In: Dworkin, M. (Ed.) The Prokaryotes, 3rd ed Springer-Verlag New York NY The Prokaryotes online

    Google Scholar 

  • Seeliger, S., P. H. Janssen, and B. Schink. 2002 Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA FEMS Microbiol. Lett. 211 65–70

    PubMed  CAS  Google Scholar 

  • Self, W. T. 2002 Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum J. Bacteriol. 184 2039–2044

    PubMed  CAS  Google Scholar 

  • Siunov, A. V., D. V. Nikitin, N. E. Sizina, V. V. Dmitriev, N. P. Kuzmin, and V. I. Duda. 1999 Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium Int. J. Syst. Bacteriol. 49 1119–1124

    PubMed  CAS  Google Scholar 

  • Sleytr, U. B., D. Pum, and M. Sara. 1996 Advances in S-layer nanotechnology and biomimetics Adv. Biophys. 34 71–79

    Google Scholar 

  • Slobodkin, A., A.-L. Reysenbach, and J. Wiegel. 1997 Isolation and characterization of the homoacetogenic thermophile Moorella glycerini sp. nov Int. J. Syst. Bacteriol. 47 969–997

    PubMed  CAS  Google Scholar 

  • Smith, L. D. S., and B. L. Williams. 1984 The Pathogenic Anaerobic Bacteria C. C. Thomas Springfield IL

    Google Scholar 

  • Spanevello, M. D., H. Yamamoto, and B. K. C. Patel. 2002 Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter Int. J. Syst. Evol. Microbiol. 52 795–800

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., and F. A. Rainey. 1997 Phylogenetic relationships In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press New York NY 533

    Google Scholar 

  • Stackebrandt, E., I. Kramer, J. Swiderski, and H. Hippe. 1999 Phylogenetic basis for a taxonomic dissection of the genus Clostridium FEMS Immunol. Med. Lett. 24 253–258

    CAS  Google Scholar 

  • Stragier, P. 2001 A gene odyssey: Exploring the genomes of endospore-forming bacteria In: A. L. Sonensheim, J. A. Hoch, and R. Losick (Eds.) Bacillus subtilis and its Relatives: From Genes to Cells ASM Press Washington DC 629

    Google Scholar 

  • Strömpl, C., B. J. Tindall, H. Lunsdorf, T. Y. Wong, E. R. B. Moore, and H. Hippe. 2000 Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 50 101–106

    PubMed  Google Scholar 

  • Sussman, M. (Ed). 2001 Molecular Medical Microbiology Academic Press New York NY

    Google Scholar 

  • Sutter, V. L., D. M. Citron, M. A. C. Edelstein, and S. M. Finegold. 1985 Wadsworth Anaerobic Bacteriology Manual, 4th ed Star Publishing Belmont CA

    Google Scholar 

  • Takai, K., A. Inoue, and K. Horikoshi. 1999 Thermaerobacter marianensis, gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11000 m deep Mariana Trench Int. J. Syst. Bacteriol. 49 619–628

    PubMed  CAS  Google Scholar 

  • Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981 A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum and Eubacterium tenue Curr. Microbiol. 5 35–38

    Google Scholar 

  • Tanner, R. S., and C. R. Woese. 1994 A phylogenetic assessment of the acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman & Hall New York NY 254–269

    Google Scholar 

  • Tanner, R. S. 1997 Cultivation of bacteria and fungi In: C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (Eds.) Manual of Environmental Microbiology ASM Press Washington DC 52–60

    Google Scholar 

  • Tanner, R. S. 2002 Cultivation of bacteria and fungi In: C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach (Eds.) Manual of Environmental Microbiology, 2nd ed ASM Press Washington DC 62–70

    Google Scholar 

  • Tholozan, J. L., J. P, Touzel, E. Samain, J. P. Grivet, G. Prensier, and G. Albagnac. 1992 Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway Arch. Microbiol. 157 249–257

    PubMed  CAS  Google Scholar 

  • Troy, F. A. 1973 Chemistry and biosynthesis of the poly γ(-D-glutamyl) capsule in Bacillus licheniformis. I: Properties of the membrane-mediated biosynthesis reaction J. Biol. Chem. 248 305–315

    PubMed  CAS  Google Scholar 

  • Tumbula, D. L., J. Keswani, J. Shieh, and W. B. Whitman. 1995 Long-term maintenance of methanogen stock cultures in glycerol In: F. T. Robb (Ed.) Archaea: A Laboratory Manual Cold Spring Harbor Laboratory Press Cold Spring Harbor NY 85–87

    Google Scholar 

  • Tummala, S. B., N. E. Welker, and E. T. Papoutsakis. 1999 Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824 Appl. Environ. Microbiol. 65 3793–3799

    PubMed  CAS  Google Scholar 

  • Tummala, S. B., C. Tomas, L. M. Harris, N. E. Welker, F. B. Rudolph, G. N. Bennet, and E. T. Papoutsakis. 2001 Genetic tools for solventogenic clostridia In: H. Bahl and P. Dürre (Eds.) Clostridia: Biotechnology and Medical Applications Wiley-VCH New York NY 105–123

    Google Scholar 

  • Van der Wielen, P. W. J. J., G. M. L. L. Rovers, J. M. A. Scheepens, and S. Biesterveld. 2002 Clostridium lactatifermentans sp nov., a lactate fermenting anaerobe isolated from the caeca of a chicken Int. J. Syst. Evol. Microbiol. 52 921–925

    PubMed  Google Scholar 

  • Van Gylswyk, N. O., and J. J. T. K. van der Toorn. 1987 Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover Int. J. Syst. Bacteriol. 37 102–105

    Google Scholar 

  • White, D. 1995 The Physiology and Biochemistry of Prokaryotes Oxford University Press New York NY

    Google Scholar 

  • Wiegel, J. 1981 Distinction between the Gram reaction and the Gram type of bacteria Int. J. Syst. Bacteriol. 31 88

    Google Scholar 

  • Wiegel, J., and L. Quandt. 1982 Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria J. Gen. Microbiol. 128 2261–2270

    PubMed  CAS  Google Scholar 

  • Wiegel, J. 1986 Methods for isolation and study of thermophiles In: T. D. Brock (Ed.) Thermophiles: General, Molecular and Applied Microbiology John Wiley New York NY 17–37

    Google Scholar 

  • Wiegel, J., L. H. Carreira, R. Garrison, N. E. Rabek, and L. G. Ljungdahl. 1991 Calcium magnesium acetate (CMA) Manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria In: D. L. Wise, Y. A. Levendis, and M. Metghalchi (Eds.) Calcium Magnesium Acetate Elsevier Science New York NY 359–418

    Google Scholar 

  • Wiegel, J., J. Hanel, and K. Ayres. 2003 Chemolithoautotrophic thermophilic iron(III)-reducer In: L. G. Ljungdahl, M. W. W. Adams, L. Barton, G. Ferry, and M. Johnson (Eds.) Biology and Physiology of Anaerobic Bacteria Springer-Verlag New York NY 235–251

    Google Scholar 

  • Wiegel, J., R. Tanner, and F. A. Rainey. 2004 An introduction to the family Clostridiaceae In: Dworkin, M. (Ed.) The Prokaryotes, 3rd ed Springer-Verlag New York NY [{http://www.prokaryotes.com}{The Prokaryotes online}]

    Google Scholar 

  • Willems, A., and M. D. Collins. 1994 Phylogenetic placement of Sarcina ventriculi and Sarcina maxima within group I Clostridium, a possible problem for future revision of the genus Clostridium: Request for an opinion Int. J. Syst. Bacteriol. 44 591–593

    PubMed  CAS  Google Scholar 

  • Willis, A. T. 1969 Techniques for the study of anaerobic, spore-forming bacteria In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 3B 79–115

    Google Scholar 

  • Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963 Formation of methane by bacterial extracts J. Biol. Chem. 238 2882–2886

    PubMed  CAS  Google Scholar 

  • Wust, J., and U. Hardegger. 1983 Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile Antimicrob. Agents. Chemother. 23 784–786

    PubMed  CAS  Google Scholar 

  • Young, M., W. L. Staudenbauer, and N. P. Minton. 1989 Genetics of Clostridium In: N. P. Minton and D. J. Clarke (Ed.) Biotechnology Handbooks, Volume 3: Clostridia Plenum Press New York NY 63–103

    Google Scholar 

  • Youngleson, J. S., J. D. Santangelo, D. T. Jones, and D. R. Woods. 1988 Cloning and expression of Clostridium acetobutylicum alcohol dehydrogenase in Escherichia coli Appl. Environ. Microbiol. 54 676–682

    PubMed  CAS  Google Scholar 

  • Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1990 Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture Int. J. Syst. Bacteriol. 40 40–44

    PubMed  CAS  Google Scholar 

  • Zhilina, T. N., E. N. Detkova, F. A. Rainey, G. A. Osipov, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 1998 Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe Curr. Microbiol. 37 177–185

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Wiegel, J., Tanner, R., Rainey, F.A. (2006). An Introduction to the Family Clostridiaceae. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30744-3_20

Download citation

Publish with us

Policies and ethics