Skip to main content

Low Coherence Holography

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods
  • 686 Accesses

Abstract

This chapter reviews wide-field coherence-gated imaging techniques for application through turbid media such as biological tissue, beginning with different approaches to coherence-gated imaging and then focusing on low coherence photorefractive holography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Low Coherence Holography

  • C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D: Appl. Phys. 36 R207–R227 (2003).

    Article  ADS  Google Scholar 

  • D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  • Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney eds. (Marcel Dekker, New York, 2002).

    Google Scholar 

  • J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).

    Article  ADS  Google Scholar 

  • Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).

    Article  ADS  Google Scholar 

  • U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).

    Article  ADS  Google Scholar 

  • A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).

    Article  ADS  Google Scholar 

  • G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408–1410 (1996).

    Article  ADS  Google Scholar 

  • G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).

    Article  ADS  Google Scholar 

  • G. A. Alphonse, in Test and Measurement Applications of Optoelectronic Devices 4648, 125–138 (2002).

    Article  ADS  Google Scholar 

  • B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).

    Article  ADS  Google Scholar 

  • Y. M. Wang, Y. H. Zhao, J. S. Nelson, Z. P. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182–184 (2003).

    Article  ADS  Google Scholar 

  • I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).

    Article  ADS  Google Scholar 

  • S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).

    Article  ADS  Google Scholar 

  • D. Parsons-Karavassilis, Y. Gu, Z. Ansari, P. M. W. French, and J. R. Taylor, “Diode-pumped spatially dispersed broadband Cr: LiSGAF and Cr: LiSAF c.w. laser sources applied to short-coherence photorefractive holography,” Opt. Commun. 181, 361–367 (2000).

    Article  ADS  Google Scholar 

  • M. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, and R. P. Salathe, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002).

    Article  ADS  Google Scholar 

  • M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002).

    Article  ADS  Google Scholar 

  • G. Indebetouw, “Distortion-free imaging through inhomogeneities by selective spatial-filtering,” Appl. Opt. 29, 5262–5267 (1990).

    Article  ADS  Google Scholar 

  • G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981–983 (1994).

    Article  ADS  Google Scholar 

  • H. P. Chiang, W. S. Chang, and J. P. Wang, “Imaging through random scattering media by using c.w.-broad-band interferometry,” Opt. Lett. 18, 546–548 (1993).

    Article  ADS  Google Scholar 

  • E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).

    Article  ADS  Google Scholar 

  • L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).

    Article  ADS  Google Scholar 

  • A. Dubois, L. Vabre, and A. C. Boccara, “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett. 26, 1873–1875 (2001).

    Article  ADS  Google Scholar 

  • C. W. Dunsby, Y. Gu, and P. M. W. French, “Single-shot phase-stepped wide-field coherence-gated imaging,” Opt. Express 11, 105–115 (2003).

    Article  ADS  Google Scholar 

  • K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57, 1060–1061 (1967).

    Article  Google Scholar 

  • K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1231 (1989).

    Article  Google Scholar 

  • P. C. Sun and E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994).

    Article  ADS  Google Scholar 

  • S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).

    Article  ADS  Google Scholar 

  • Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. Melloch, “Elimination of beam walk-off in low coherence, off-axis, photorefractive holography,” Opt. Lett. 26, 334–336 (2000).

    Article  ADS  Google Scholar 

  • H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “2-Dimensional imaging through diffusing media using 150-Fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).

    Article  ADS  Google Scholar 

  • E. Leith, P. Naulleau, and D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).

    Article  ADS  Google Scholar 

  • E. Arons and D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995).

    Article  ADS  Google Scholar 

  • M. P. Shih, H. S. Chen, and E. N. Leith, “Spectral holography for coherence-gated imaging,” Opt. Lett. 24, 52–54 (1999).

    Article  ADS  Google Scholar 

  • I. Iglesias, H. S. Chen, K. D. Mills, D. S. Dilworth, and E. N. Leith, “Electronic channel fringe holography for depth and delay measurements,” Appl. Opt. 38, 2196–2203 (1999).

    Article  ADS  Google Scholar 

  • A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24, 519–521 (1999).

    Article  ADS  Google Scholar 

  • E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).

    Article  ADS  Google Scholar 

  • E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).

    Article  ADS  Google Scholar 

  • E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).

    Article  ADS  Google Scholar 

  • A. V. Mamaev, L. L. Ivleva, N. M. Polozkov, and V. V. Shkunov, in Conference on Lasers and Electro-Optics 11(OSA, 1993), 632–633.

    Google Scholar 

  • S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).

    Article  ADS  Google Scholar 

  • N. P. Barry, R. Jones, S. C. W. Hyde, J. C. Dainty, and P. M. W. French, “High background holographic imaging using photorefractive barium titanate,” Electron. Lett. 33, 1732–1733 (1997).

    Article  Google Scholar 

  • S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “Sub 100 μm depth-resolved holographic imaging through scattering media in the near-Infrared,” Opt. Lett. 20, 2330–2332 (1995).

    Article  ADS  Google Scholar 

  • Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum-wells-transverse Franz-Keldysh geometry,” J. Opt. Soc. Am. B-Opt. Phys. 9, 1626–1641 (1992).

    Article  ADS  Google Scholar 

  • R. Jones, S. C. W. Hyde, M. J. Lynn, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Holographic storage and high background imaging using photorefractive multiple quantum wells,” Appl. Phys. Lett. 69, 1837–1839 (1996).

    Article  ADS  Google Scholar 

  • R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998).

    Article  ADS  Google Scholar 

  • R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for three-dimensional imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).

    Article  ADS  Google Scholar 

  • M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes,” Appl. Phys. Lett. 75, 1363–1365 (1999).

    Article  ADS  Google Scholar 

  • M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B-Lasers Opt. 70, 151–154 (2000).

    Article  ADS  Google Scholar 

  • Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources, and photorefractive structured illumination,” IEEE J. Sel. Top. Quant. Electron. 7, 878–886 (2001).

    Article  ADS  Google Scholar 

  • C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P. M. W. French, D. D. Nolte, and M. M. R., “High-speed wide-field coherence-gated imaging via photorefractive holography with photorefractive multiple quantum well devices,” J. Opt. A: Pure Appl. Opt. (2003-in press).

    Google Scholar 

  • A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–73 (1966).

    Article  ADS  Google Scholar 

  • J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume Holographic Storage and Retrieval of Digital Data,” Science 265, 749–752 (1994).

    Article  ADS  Google Scholar 

  • P. Delaye, J. M. C. Jonathon, G. Pauliat, and G. Roosen, “Photorefractive materials: specifications relevant to applications,” Appl. Opt. 5, 541–559 (1996).

    ADS  Google Scholar 

  • M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “A method for poling barium-titanate, BaTiO3,” Ferroelectrics 120, 167–173 (1991).

    Article  Google Scholar 

  • Y. S. Bau and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).

    Article  ADS  Google Scholar 

  • M. B. Klein, “Optimization of the Photorefractive Properties of Bati03,” J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 3, P10–P10 (1986).

    Article  ADS  Google Scholar 

  • P. G. Schunemann, T. M. Pollack, Y. Yang, Y. Y. Teng, and C. Wong, “Effects of feed material and annealing atmosphere on the properties of photorefractive barium-titanate crystals,” J. Opt. Soc. Am. B 5, 1702–1710 (1988).

    Article  ADS  Google Scholar 

  • B. A. Wechsler and M. B. Klein, “Thermodynamic Point-Defect Model of Barium-Titanate and Application to the Photorefractive Effect,” J. Opt. Soc. Am. B-Opt. Phys. 5, 1711–1723 (1988).

    Article  ADS  Google Scholar 

  • B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and Photorefractive Properties of Infrared-Sensitive Rhodium-Doped Barium-Titanate,” Opt. Lett. 19, 536–538 (1994).

    Article  ADS  Google Scholar 

  • S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650 °C,” J. Opt. Soc. Am. B 3, 283–292 (1986).

    Article  ADS  Google Scholar 

  • D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, “High-Efficiency Fast Response in Photorefractive Batio3 at 120-Degrees-C,” Appl. Phys. Lett. 52, 1759–1761 (1988).

    Article  ADS  Google Scholar 

  • K. Sayano, A. Yariv, and R. R. Neurgaonkar, “Order-of-magnitude reduction of the photorefractive response-time in rhodium-doped Sr0.6Ba0.4Nb2O6 with a dc electric-field,” Opt. Lett. 15, 9–11 (1990).

    Article  ADS  Google Scholar 

  • J. P. Huignard, H. Rajbenbach, R. P. H., and L. Solmar, “Wave mixing and in photorefractive bismuth silicon oxide crystals and its applications,” Opt. Eng. 24, 586–592 (1985).

    Article  ADS  Google Scholar 

  • A. Marrakchi, R. V. Johnson, and A. R. Tanguay, “Polarisation properties of photorefractive diffraction in electroopic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321–336 (1986).

    Article  ADS  Google Scholar 

  • B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High photorefractive gain in 2-beam coupling with moving fringes in GaAs-Cr crystals,” Opt. Lett. 12, 327–329 (1988).

    Article  ADS  Google Scholar 

  • Y. Zhang, R. Burzynski, S. Ghosal, and M. K. Casstevens, “Photorefractive polymers and composites,” Advanced Materials 8, 111–125 (1996).

    Article  Google Scholar 

  • K. Sutter and P. Gunter, “Photorefractive gratings in the organic-crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethan,” J. Opt. Soc. Am. B 7, 2274–2278 (1990).

    Article  ADS  Google Scholar 

  • P. Tayebati, J. Kumar, and S. Scott, “Photorefractive effect at 633-nm in semiinsulating cadmium-sulfide,” Appl. Phys. Lett. 59, 3366–2668 (1991).

    Article  ADS  Google Scholar 

  • Y. Belaud, P. Delaye, J. C. Launay, and G. Roosen, “Photorefractive response of CdTe-v under ac electric-field from 1 to 1.5 μm,” Opt. Commun. 105, 204–208 (1994).

    Article  ADS  Google Scholar 

  • A. Partovi and E. M. Garmire, “Band-Edge Photorefractivity in Semiconductors-Theory and Experiment,” J. Appl. Phys. 69, 6885–6898 (1991).

    Article  ADS  Google Scholar 

  • A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High-Speed Joint-Transform Optical-Image Correlator Using Gaas/Algaas Semiinsulating Multiple-Quantum Wells and Diode-Lasers,” Opt. Lett. 18, 906–908 (1993).

    Article  ADS  Google Scholar 

  • A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. Obryan, T. H. Chiu, and W. H. Knox, “Cr-Doped Gaas/Algaas Semiinsulating Multiple Quantum-Well Photorefractive Devices,” Appl. Phys. Lett. 62, 464–466 (1993).

    Article  ADS  Google Scholar 

  • D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum confined stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  ADS  Google Scholar 

  • S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B-Lasers Opt. 68, 863–869 (1999).

    Article  ADS  Google Scholar 

  • F. L. Lederman and J. D. Dow, “Theroy of electoabsorption by anisotropic and layered semiconductors. I. Two-dimensional excitons in a uniform electric field,” Phys. Rev. B. 13, 1633–1642 (1976).

    Article  ADS  Google Scholar 

  • W. S. Rabinovich, R. Mahon, S. R. Bowman, D. S. Katzer, and K. Ikossi-Anastasiou, “Lock-in holography using optically addressed multiple-quantum-well spatial light modulators,” Opt. Lett. 24, 1109–1111 (1999).

    Article  ADS  Google Scholar 

  • D. D. Nolte and M. R. Melloch, in Photorefractive Effects and Materials, D. D. Nolte ed. (Kluwer Academic Publishers, Dordrecht, 1995), 373–452.

    Book  Google Scholar 

  • S. Ducharme, J. C. Scott, R. J. Tweig, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

    Article  ADS  Google Scholar 

  • S. M. Silence, C. A. Walsh, J. C. Scott, J. Matray, R. J. Tweig, F. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett. 17, 1107–1109 (1992).

    Article  ADS  Google Scholar 

  • D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, and S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).

    Article  ADS  Google Scholar 

  • A. Goonesekera, D. Wright, and W. E. Moerner, “Image amplification and novelty filtering with a photorefractive polymer,” Appl. Phys. Lett. 76, 3358–3360 (2000).

    Article  ADS  Google Scholar 

  • D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).

    Article  ADS  Google Scholar 

  • E. Mecher, F. Gallego-Gomez, H. Tillmann, H. H. Horhold, J. C. Hummelen, and K. Meerholz, “Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination,” Nature 418, 959–964 (2002).

    Article  ADS  Google Scholar 

  • P. Bernasconi, G. Montemezzani, M. Wintermantel, I. Biaggio, and P. Gunter, “High-resolution, high-speed photorefractive incoherent-to-coherent optical converter,” Opt. Lett. 24, 199–201 (1999).

    Article  ADS  Google Scholar 

  • S. Iwamoto, S. Taketomi, H. Kageshima, M. Nishioka, T. Someya, Y. Arakawa, K. Fukutani, T. Shimura, and K. Kuroda, “Photorefractive multiple quantum wells at 1064 nm,” Opt. Lett. 26, 22–24 (2001).

    Article  ADS  Google Scholar 

  • C. De Matos, H. L'Haridon, J. C. Keromnes, G. Ropars, A. Le Corre, P. Gravey, and M. Pugnet, “Multiple quantum well optically addressed spatial light modulators operating at 1.55 mu m with high diffraction efficiency and high sensitivity,” J. Opt. A-Pure Appl. Opt. 1, 286–289 (1999).

    Article  ADS  Google Scholar 

  • S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Depth-resolved holography through turbid media using photorefraction,” IEEE J. Sel. Top. Quant. Electron. 2, 965–975 (1996).

    Article  ADS  Google Scholar 

  • C. Dunsby, Y. Gu, D. D. Nolte, M. R. Melloch, and P. M. W. French, “Wide-field coherence gated imaging: photorefractive holography and wide-field coherent heterodyne imaging” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, 4956, V. V. Tuchin, J. A. Izzat, and J. G. Fujimoto eds. (SPIE, San Jose, 2003), 26–33.

    Chapter  Google Scholar 

  • C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219, 87–99 (2003).

    Article  ADS  Google Scholar 

  • N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8, 260–263 (2003).

    Article  ADS  Google Scholar 

  • P. Yu, L. L. Peng, M. Mustata, D. D. Nolte, J. J. Turek, M. R. Melloch, C. Dunsby, Y. Gu, and P. M. W. French, “Imaging of tumor necroses usingfull-frame optical coherence imaging” in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, 4956, V. V. Tuchin, J. A. Izzat, and J. G. Fujimoto eds. (SPIE, San Jose, 2003), 34–41.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

French, P.M.W. (2004). Low Coherence Holography. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics