Skip to main content

Optical Doppler Tomography

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods
  • 688 Accesses

Abstract

This chapter describes optical Doppler tomography (ODT). This is an imaging modality that combines Doppler principles with optical coherence tomography to image tissue structure and blood flow velocity simultaneously. We will review the principle and technology of ODT, and illustrate a few examples of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Optical Doppler Tomography

  • E. Yamada, M. Matsumura, S. Kyo, and R. Omoto, “Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging,” Am. J. Cardiol. 75, 161–165 (1995).

    Article  Google Scholar 

  • P. L. Carson, D. D. Adler, and J. B. Fowlkes, “Enhanced color flow imaging of breast cancer vasculature: continuous wave Doppler and three-dimensional display,” J. Ultrasound Med. 11, 77 (1992).

    Article  Google Scholar 

  • D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).

    Article  ADS  Google Scholar 

  • V. Gusmeroli and M. Martnelli, “Distributed laser Doppler velocimeter,” Opt. Lett. 16, 1358–1360 (1991).

    Article  ADS  Google Scholar 

  • Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive Imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).

    ADS  Google Scholar 

  • J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439–1441 (1997).

    Article  ADS  Google Scholar 

  • Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).

    Article  ADS  Google Scholar 

  • Z. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol. 67, 56–60 (1998).

    Article  Google Scholar 

  • Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler Tomography,” IEEE J. Select. Tops Quant. Electr. 5(4), 1134–1141 (1999).

    Article  ADS  Google Scholar 

  • M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography.,” Opt. Lett. 23, 1057–1059 (1998).

    Article  ADS  Google Scholar 

  • Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high veocity sensitivity,” Opt. Lett. 25(2), 114 (2000).

    Article  ADS  Google Scholar 

  • Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).

    Article  ADS  Google Scholar 

  • Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Select. Tops Quant. Electr. 7, 931–935 (2001).

    Article  ADS  Google Scholar 

  • Z. Ding, Y. Zhao, H. Ren, S. J. Nelson, and Z. Chen, “Real-time phase resolved optical coherence tomography and optical Doppler tomography,” Opt. Express 10, 236–245 (2002).

    Article  ADS  Google Scholar 

  • J. S. Nelson, K. M. Kelly, Y. Zhao, and Z. Chen, “Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography,” Arch. Dermatol. 137(6), 741–744 (2001).

    Google Scholar 

  • V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).

    Article  ADS  Google Scholar 

  • V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, 34–36 (2002).

    Article  ADS  Google Scholar 

  • D. P. Dave and T. E. Milner, “Doppler-angle measurement in highly scattering media,” Opt. Lett. 25(20), 1523–1525 (2000).

    Article  ADS  Google Scholar 

  • H. Ren, M. K. Breke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27, 409–411 (2002).

    Article  ADS  Google Scholar 

  • S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448–1450 (2000).

    Article  ADS  Google Scholar 

  • V. X. Yang, M. L. Gordon, S. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dyhamic range Doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003).

    Article  ADS  Google Scholar 

  • G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).

    Article  ADS  Google Scholar 

  • F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and Quadratic Time-Frequency Signal Representations,” IEEE Spectrum 4, 21–67 (1992).

    Google Scholar 

  • S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “ultrahigh velocity resolution imaging of the microcirculation in vivo using colar Doppler optical coherence tomography,” Proc. SPIE 4251, 156 (2001).

    Article  ADS  Google Scholar 

  • A. F. Fercher, C. K. Kitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).

    Article  ADS  Google Scholar 

  • R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).

    Article  ADS  Google Scholar 

  • M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitvity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).

    Article  ADS  Google Scholar 

  • J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).

    Article  ADS  Google Scholar 

  • S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High speed optical frequency domain imaging,” Opt. Express 11, 2593–2563 (2003).

    Google Scholar 

  • Z. Chen, “Optical Doppler tomography for high resolution imaging of in vivo microcirculation,” Whitaker Foundation Investigator Abstract, 1997.

    Google Scholar 

  • R. Leitgeb, L. Schmetterer, M. Wojtkowski, M. Sticker, C. K. Hitzenberger, and A. F. Fercher, “Flow velocity measurement by frequency domain short cohrence interferometry,” Proc. SPIE 4619, 16 (2002).

    Article  ADS  Google Scholar 

  • L. Wang, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Phase-resolved frequency domain optical Doppler tomography,” Proc. SPIE 5345, to be published (2004).

    Google Scholar 

  • L. Wang, X. Wei, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun. in press (2004).

    Google Scholar 

  • D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combine Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett. 28, 1120 (2003).

    Article  ADS  Google Scholar 

  • S. Proskurin, Y. He, and R. Wang, “Determination of flow velocity vector based on Doppler shift and spectrum boradening with optical coherence tomography,” Opt. Lett. 28, 1227 (2003).

    Article  ADS  Google Scholar 

  • L. Wang, Y. Wang, M. Bachaman, G. P. Li, and Z. Chen, “Quantify flow vector using phase resolved optical Doppler tomography,” Proc. SPIE 5316, to be published (2004).

    Google Scholar 

  • A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, Z. Chen, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Select. Tops Quant. Electr. 5, 1168–1175 (1999).

    Article  ADS  Google Scholar 

  • R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architechture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).

    Article  ADS  Google Scholar 

  • Y. Chen, Z. Chen, Y. Zhao, J. S. Nelson, M. Bachman, Y. Chiang, C. Chu, and G. P. Li, “tTest channels for flow characterization of processed plastic microchannels,” Materials Science of Microelectromechanical Systems (MEMS) Devices II, M. P. deBoer, A. H. Heuer, S. J. Jacobs, E. Peeters, Eds., MRS, December (1999).

    Google Scholar 

  • Y. Chen, “In vivo measurement and characterization of fluid flow in microchannels using OCT/ODT system,” M. S. Thesis, University of California, Irvine, Irvine, CA, (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, Z. (2004). Optical Doppler Tomography. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics