Skip to main content

Polarization Sensitive Optical Coherence Tomography

Phase Sensitive Interferometry for Multi-Functional Imaging

  • Reference work entry
  • First Online:
Handbook of Coherent Domain Optical Methods

Abstract

The principle of the detennination of Stokes parameters in OCT by the coherent detection of interference fringes is explored. The implementation of a real time fiber based PS-OCT system, the associated behavior of polarization states in single mode fibers, and optimal polarization modulation schemes will be described. Processing of PS-OCT signals to extract polarization properties of tissue, such as birefringence, optical axis orientation, and diattenuation will be explained. In vivo detennination of skin birefringence, and birefringence of the retinal nerve fiber layer for glaucoma detection will be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References to Polarization Sensitive Optical Coherence Tomography

  • D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  • H. F. Hazebroek and A. A. Holscher, “Interferometric ellipsometry,” J. Physics E-Scientific Instr. 6, 822–826 (1973).

    Article  ADS  Google Scholar 

  • T. P. Newson, F. Farahi, J. D. C. Jones, and D. A. Jackson, “Combined interferometric and polarimetric fiber optic temperature sensor with a short coherence length source,” Opt. Communs. 68, 161–165 (1988).

    Article  ADS  Google Scholar 

  • M. Kobayashi, H. Hanafusa, K. Takada, and J. Noda, “Polarization-independent interferometric optical-time-domain reflectometer,” J. Lightwave Technol. 9, 623–628 (1991).

    Article  ADS  Google Scholar 

  • M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).

    Article  ADS  Google Scholar 

  • J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, (1997).

    Google Scholar 

  • M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).

    Article  ADS  Google Scholar 

  • B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).

    Article  ADS  Google Scholar 

  • M. G. Ducros, J. F. de Boer, H. E. Huang, L. C. Chao, Z. P. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Select. Top. Quant. Electr. 5, 1159–1167 (1999).

    Article  ADS  Google Scholar 

  • B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).

    Article  ADS  Google Scholar 

  • J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002).

    Article  Google Scholar 

  • W. A. Shurcliff and S. S. Ballard, Polarized Light (Van Nostrand, New York, 1964).

    Google Scholar 

  • J. F. de Boer, T. E. Milner, and J. S. Nelson, “Two dimensional birefringence imaging in biological tissue using phase and polarization sensitive optical coherence tomography” in Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration (OSA, Washington, DC, 1998).

    Google Scholar 

  • J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).

    Article  ADS  Google Scholar 

  • J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas, and J. S. Nelson, Polarization-sensitive optical coherence tomography, in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, Inc., New York, 2002), 237–274.

    Google Scholar 

  • C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  • G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999).

    Article  ADS  Google Scholar 

  • D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low coherence reflectometer for birefringence characterization and ranging,” Opt. Lett. (2003).

    Google Scholar 

  • C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett. 13, 687–689 (1988).

    Article  ADS  Google Scholar 

  • C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000).

    Article  ADS  Google Scholar 

  • G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).

    Article  ADS  Google Scholar 

  • A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).

    Article  ADS  Google Scholar 

  • J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. P. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Select. Top. Quant. Electr. 5, 1200–1204 (1999).

    Article  ADS  Google Scholar 

  • B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11, 782–793 (2003).

    Article  ADS  Google Scholar 

  • S. L. Jiao and L. H. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101–103 (2002).

    Article  ADS  Google Scholar 

  • S. L. Jiao and L. H. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).

    Article  ADS  Google Scholar 

  • N. Vansteenkiste, P. Vignolo, and A. Aspect, “Optical reversibility theorems for polarization-application to remote-control of polarization,” J. Opt. Soc. Am. A 10, 2240–2245 (1993).

    Article  ADS  Google Scholar 

  • M. C. Pierce, B. H. Park, B. Cense, and J. F. de Boer, “Simultaneous intensity, birefringence, and flow measurements with high speed fiber-based optical coherence tomography,” Opt. Lett. 27, 1534–1536 (2002).

    Article  ADS  Google Scholar 

  • J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, (1998).

    Google Scholar 

  • J. M. Schmitt and S. H. Xiang, “Cross-polarized backscatter in optical coherence tomography of biological tissue,” Opt. Lett. 23, 1060–1062 (1998).

    Article  ADS  Google Scholar 

  • J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26, 1069–1071 (2001).

    Article  ADS  Google Scholar 

  • Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).

    Article  ADS  Google Scholar 

  • J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, (1997).

    Google Scholar 

  • Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).

    Article  ADS  Google Scholar 

  • Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000).

    Article  ADS  Google Scholar 

  • V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett. 27, (2002).

    Google Scholar 

  • A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. A. Izatt, “Real-time in vivo colors Doppler optical coherence tomography,” J. Biomed. Opt. 7, 123–129 (2002).

    Article  ADS  Google Scholar 

  • Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. W. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett. 27, 98–100 (2002).

    Article  ADS  Google Scholar 

  • J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, (2001).

    Google Scholar 

  • H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthal. 100, 135–146 (1982).

    Article  Google Scholar 

  • J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography,” Arch. Ophthal. 113, 586–596 (1995).

    Article  Google Scholar 

  • W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthal. 121, 695–706 (2003).

    Article  Google Scholar 

  • R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathalogic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthal. 108, 557–560 (1990).

    Article  Google Scholar 

  • B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. (2004).

    Google Scholar 

  • M. G. Ducros, J. D. Marsack, H. G. Rylander, S. L. Thomsen, and T. E. Milner, “Primate retina imaging with polarization-sensitive optical coherence tomography,” J. Opt. Soc. Am. A 18, 2945–2956 (2001).

    Article  ADS  Google Scholar 

  • X. R. Huang and R. W. Knighton, “Linear birefringence of the retinal nerve fiber layer measured in vitro with a multispectral imaging micropolarimeter,” J. Biomed. Opt. 7, 199–204 (2002).

    Article  ADS  Google Scholar 

  • American National Standards Institute, “American National Standard for Safe Use of Lasers Z136.1.” 2000: Orlando.

    Google Scholar 

  • F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiology (London) 181, 576–& (1965).

    Article  Google Scholar 

  • D. S. Greenfield, R. W. Knighton, and X. R. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthal. 129, 715–722 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Boer, J.F. (2004). Polarization Sensitive Optical Coherence Tomography. In: Tuchin, V.V. (eds) Handbook of Coherent Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/0-387-29989-0_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-29989-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-0-387-29989-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics