Skip to main content
  • 563 Accesses

Information theory is applied to data compression in many fields, to efficiently store or transmit texts, sounds, images and signals. In this chapter, different techniques for Electroencephalograph (EEG) and Dynamic or Holter EEG data compression will be discussed, with the requirement that compression should not prevent perfect reconstruction of the original information from the compressed one (such compression techniques are called “lossless”).

The present work was performed in cooperation with the Neurological Department of the Santa Chiara Hospital in Trento where the hardware acquires up to 32 channels, with 8 bit accuracy, at a maximum sampling rate of 1 kHz. However, in everyday practice, a minor number of channels and a lower sampling rate suffice. All results reported are referred to 128 Hz sampling rate per channel, 8 bit accuracy, 20 channels (20,480 bps data stream), which is considered sufficient to achieve a good EEG signal quality. Lossy compressions can preserve...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References to Techniques in Data Compression for Electroencephalograms

  • N. Ahmed and K. R. Rao. Orthogonal Transforms for Digital Signal Processing. Springer-Verlag, 1975.

    Google Scholar 

  • G. Antoniol and P. Tonella. EEG data compression techniques. IEEE Transactions on Biomedical Engineering 44(2): 105–114, 1997.

    Article  Google Scholar 

  • G. Antoniol and P. Tonella. Data Compression Techniques for EEG Signals. IRST Technical Report No. 9508-03, Trento, Italy, 1995.

    Google Scholar 

  • R. Battiti, A. Sartori, G. Tecchiolli, P. Tonella and A. Zorat. Neural Compression: an integrated application to EEG signals. Proc. IWANNT, pp. 210–217, 1995.

    Google Scholar 

  • H. Braun and M. Riedmiller. Rprop: A fast and robust backpropagation learning strategy. Proc. ACNN, 1993.

    Google Scholar 

  • A. Cohen, F. Flomen and N. Drori. EEG Sleep Staging Using Vectorial Autoregressive Models, Advances of Processing and Pattern Analysis of Biological Signals. Plenum Press, 1995.

    Google Scholar 

  • T. H. Cormen, C. E. Leiserson and R. L. Rivest. Algorithms. MIT Press, 1990.

    Google Scholar 

  • T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, 1991.

    Google Scholar 

  • R. M. Gardner, D. R. Bennet and R. B. Vorce. Eight Channel data set for clinical EEG transmission over dial-up telephone network. IEEE Transactions on Biomedical Engineering 246–249, 1974.

    Google Scholar 

  • A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.

    Google Scholar 

  • P. S. Hamilon and W. J. Tompkins. Theoretical and experimental rate distorsion performance in compression of ambulatory ECG’s. IEEE Transactions on Biomedical Engineering 38(3): 261–266, 1991.

    Google Scholar 

  • G. Held and T. R. Marshall. Data Compression. John Wiley and Sons, 1991.

    Google Scholar 

  • S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan and W. A. Coberly. ECG data compression techniques-a unified approach. IEEE Transactions on Biomedical Engineering 37(4): 329–343, 1990.

    Article  Google Scholar 

  • S. Lawrence Marple Jr., Digital Spectral Analysis with Applications. Prentice Hall, 1987

    Google Scholar 

  • C. P. Mammen and B. Ramamurthi. Vector quantization for compression of multichannel ECG. IEEE Transactions on Biomedical Engineering 37(9): 821–825, 1990.

    Article  Google Scholar 

  • J. I. Makhoul. Linear Prediction: A Tutorial Review. Proc. IEEE, 1972.

    Google Scholar 

  • J. Markel and A. Grey. Linear Prediction of Speech. Springer-Verlag, New York, 1976.

    Book  MATH  Google Scholar 

  • G. Nave and A. Cohen. ECG Compression Using Long-Term Prediction. IEEE Transactions on Biomedical Engineering 40(9): 877–885, 1993.

    Article  Google Scholar 

  • Y. Ohtaki, K. Toraichi and Y. Ishiyama. On compressing method of EEG data for their digital database. Proc. ICASSP, pp. 581–584, 1992.

    Google Scholar 

  • S. C. Tai. An extensive markov system for ECG exact coding. IEEE Transactions on Biomedical Engineering 42(2): 230–232, 1995.

    Article  MathSciNet  Google Scholar 

  • F. Vaz, O. Pacheco and A. Martins da Silva. Long distance EEG transmission using the public telephone network. Bolet. Epileps. 1(3): 35–39, 1994.

    Google Scholar 

  • J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3): 337–343, 1977.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Techniques in Data Compression for Electroencephalograms. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_38

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics