Skip to main content

Computational Neuroanatomy Using Deformable Neuroanatomical Models: Applications in Brain Imaging

  • Reference work entry
Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems
  • 554 Accesses

18.1 2.1 Computational Models for Neuroanatomy

The advent of tomographic imaging such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), ultrasound (US), and others, has given scientists and clinicians the opportunity to look at the structure and the function of the human brain in vivo. The concomitant development of computerized image analysis methods and algorithms, during the past 15 years, has made it possible to quantitatively analyze data obtained via any of these tomographic imaging methods. Moreover, as more and more emphasis is placed on the automation of these methods, the possibility to perform studies including hundreds, or even thousands of subjects is becoming more tangible. The capability to process large amounts of data is very important, since it increases the statistical power of such studies, i.e. their ability to detect subtle effects of age, gender, disease, or other factors on the anatomy or the physiology of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References to Computational Neuroanatomy using Deformable Neuroanatomical Models: Applications in Brain Imaging

  • V. F. Ferrario, C. Sforza et. al. Shape of the human corpus callosum in childhood: Elliptic Fourier analysis of midsagittal magnetic resonance scans. Investigative Radiology 31: 1–5, 1994.

    Article  Google Scholar 

  • D. C. Van Essen. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385: 313–318, 1997.

    Article  Google Scholar 

  • M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision 1: 321–331, 1988.

    Article  Google Scholar 

  • C. A. Davatzikos and J. L. Prince. An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging 14: 65–80, 1995.

    Article  Google Scholar 

  • T. F. Cootes, A. Hill, C. J. Taylor and J. Haslam. Use of active shape models for locating structures in medical images. Image and Vision Computing 12(6): 355–365, 1994.

    Article  Google Scholar 

  • N. Duta and M. Sonka. Segmentation and interpretation of MR brain images using an improved knowledge-based active shape model. In: Information Processing in Medical Imaging, 375–380. Springer Verlag, 1997.

    Google Scholar 

  • A. A. Amini, S. S. Tehrani and T. E. Weymouth. Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. Proceedings of the International Conference on Computing Vision, 95–99, 1988.

    Google Scholar 

  • L. D. Cohen. On active contour models and balloons. CVGIP: Image Understanding 53(2): 211–218, 1991.

    Article  MATH  Google Scholar 

  • F. Leymarie and M. D. Levine. Tracking deformable objects in the plane using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(6): 617–634, 1993.

    Article  Google Scholar 

  • K. F. Lai. Deformable Contours: Modeling, Extraction, Detection, and Classification. PhD thesis, University of Wisconsin, Madison, 1994.

    Google Scholar 

  • S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi. Gradient flows and geometric active contours. Proceedings of the International Conference on Computing Vision, ICCV’95, 810–815, 1995.

    Google Scholar 

  • R. Malladi, J. A. Sethian and B. C. Vemuri. Shape modeling with front propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 17: 158–177, 1995.

    Article  Google Scholar 

  • R. Samadani. Adaptive snakes: control of damping and material parameters. SPIE Proceedings, Geometric Methods in Computer Vision 1570: 202–213, 1991.

    Google Scholar 

  • S. Ranganath. Contour extraction from cardiac MRI studies using snakes. IEEE Transactions on Medical Imaging 14: 328–338, 1995.

    Article  Google Scholar 

  • L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(11): 1061–1075, 1992.

    Article  Google Scholar 

  • C. Davatzikos and J. L. Prince. Convexity analysis of active contour problems. Image and Vision Computing 17(1): 1998.

    Google Scholar 

  • C. Davatzikos and R. N. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging 15: 785–795, 1996.

    Article  Google Scholar 

  • F. T. Cootes and C. J. Taylor. Combining point distribution models with shape models based on finite element analysis. Image and Vision Computing 13(5): 403–409, 1995.

    Article  Google Scholar 

  • G. Szekely, A. Kelemen, C. Brechbuhler and G. Gerig. Segmentation of 2-D and 3-D objects from MRI volume data using constrained deformations of flexible Fourier contour and surface models. Medical Image Analysis 1: 19–34, 1996.

    Google Scholar 

  • M. Vaillant and C. Davatzikos. Finding parametric representations of the cortical sulci using an active contour model. Medical Image Analysis 1(4): 295–315, 1997.

    Article  Google Scholar 

  • J. Rademacher, V. S. Caviness, H. Steinmetz and A. M. Galaburda. Topographical variation of the human primary corteces: implications for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex 3: 313–329, 1993.

    Article  Google Scholar 

  • A. M. Demiau, J. F. Mangin, J. Régis, O. Pizzato and V. Frouin. Differential features of cortical folds. CVRMed II and MRCAS III, 439–448, 1997.

    Google Scholar 

  • J. Talairach and P. Tournoux. Co-planar Stereotaxic Atlas of the Human Brain. Thieme, Stuttgart, 1988.

    Google Scholar 

  • C. Broit. Optimal Registration of Deformed Images PhD thesis, University of Pennsylvania, 1981.

    Google Scholar 

  • R. Bajcsy and S. Kovacic. Multiresolution elastic matching. Computing Vision, Graphics, and Image Proceedings 46: 1–21, 1989.

    Article  Google Scholar 

  • J. C. Gee, M. Reivich and R. Bajcsy. Elastically deforming 3D atlas to match anatomical brain images. Journal of Computer Assisted Tomogrophy 17: 225–236, 1993.

    Article  Google Scholar 

  • M. I. Miller, G. E. Christensen, Y. Amit and U. Grenander. Mathematical textbook of deformable neuroanatomies. Proceedings of the National Academy of Sciences USA 90: 11944–11948, 1993.

    Google Scholar 

  • G. E. Christensen, R. D. Rabbitt and M. I. Miller. 3D brain mapping using a deformable neuroanatomy. Phys. Med. Biol. 39: 609–618, 1994.

    Article  Google Scholar 

  • G. E. Christensen, M. I. Miller, M. W. Vannier and U. Grenander. Individualizing neuro-anatomical atlases using a massively parallel computer. Computer, 32–38, 1996.

    Google Scholar 

  • S. C. Joshi, M. I. Miller, G. E. Christensen, A. Banerjee, T. Coogan and U. Grenander. Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds. Proceedings of the SPIE Conference on Geometrical Methods in Applied Imaging 2573: 278–289, 1995.

    MathSciNet  Google Scholar 

  • D. L. Collins, P. Neelin, T. M. Peters and A. C. Evans. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography 18: 192–205, 1994.

    Article  Google Scholar 

  • J. P. Thirion. Non-rigid matching using deamons. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR’96, 1996.

    Google Scholar 

  • W. L. Nowinski, R. N. Bryan and R. Raghavan (Eds). The Electronic Clinical Brain Atlas on CD-ROM. Thieme, 1997.

    Google Scholar 

  • J. P. Thirion, O. Monga, S. Benayoun, A. Gueziec and N. Ayache. Automatic registration of 3-D images using surface curvature. SPIE Proceedings, Mathematical Methods in Medical Imaging 1768: 206–216, 1992.

    Google Scholar 

  • G. Subsol, J. P. Thirion and N. Ayache. Application of an automatically built 3D morphometric brain atlas: Study of cerebral ventricle shape. Vis. in Biom. Comp., Lecture Notes in Comp. Sci., 373–382, 1996.

    Google Scholar 

  • C. Davatzikos. Spatial transformation and registration of brain images using elastically deformable models. Comp. Vision and Image Understanding 66(2): 207–222, 1997.

    Article  Google Scholar 

  • C. Davatzikos. Spatial normalization of 3D images using deformable models. J. Comp. Assist. Tomography 20: 656–665, 1996.

    Article  Google Scholar 

  • G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, Maryland, 1983.

    Google Scholar 

  • M. Habib, D. Gayraud, A. Oliva, J. Regis, G. Salamon and R. Khalil. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain and Cognition 16: 41–61, 1991.

    Article  Google Scholar 

  • W. Byne, R. Bleier and L. Houston. Variations in human corpus callosum do not predict gender: a study using magnetic resonance imaging. Behavioral Neuroscience 102: 222–227, 1988.

    Article  Google Scholar 

  • C. de Lacoste-Utamsing and R. L. Holloway. Sexual dimorphism in the human corpus callosum. Science 216: 1431–1432, 1982.

    Article  Google Scholar 

  • M. C. de Lacoste, R. L. Holloway and D. J. Woodward. Sex differences in the fetal corpus callosum. Human Neurobiology 5: 93–96, 1986.

    Google Scholar 

  • A. D. Bell and S. Variend. Failure to demonstrate sexual dimorphism of the corpus callosum. Journal of Anatomy 143: 143–147, 1985.

    Google Scholar 

  • L. S. Allen, M. F. Richey, Y. M. Chai and R. A. Gorski. Sex differences in the corpus callosum of the living human being. The Journal of Neuroscience 11: 933–942, 1991.

    Google Scholar 

  • A. Kertesz, M. Polk, J. Howell and S. E. Black. Cerebral dominance, sex and callosal size on MRI. Neurology 37: 1385–1388, 1987.

    Article  Google Scholar 

  • J. S. Oppenheim, B. C. Lee, R. Nass and M. Gazzaniga. No sex-related difference in human corpus callosum based on magnetic resonance images. Neuropsychologia 9: 97–111, 1987.

    Google Scholar 

  • G. Weber and S. Weis. Morphometric analysis of the human corpus callosum fails to reveal sex-related differences. J. Hirnforschung 27: 237–240, 1986.

    Google Scholar 

  • S. F. Witelson. The brain connection: the corpus callosum is larger in left-handers. Science 229: 665–668, 1985.

    Article  Google Scholar 

  • S. F. Witelson. Sex differences in neuroanatomical changes with aging. New England Journal of Medicine 325: 211–212, 1991.

    Article  Google Scholar 

  • H. Steinmetz, L. Jancke, A. Kleinschmidt, G. Schlaug, J. Volkmann and Y. Huang. Sex but no hand difference in the isthmus of the corpus callosum. Neurology 42: 749–752, 1992.

    Article  Google Scholar 

  • R. L. Holloway, P. J. Anderson, R. Defendini and C. Harper. Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. American Journal of Physical Anthropology 92: 481–498, 1993.

    Article  Google Scholar 

  • J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, 1987.

    Google Scholar 

  • C. Davatzikos, M. Vaillant, S. Resnick, J. L. Prince, S. Letovsky and R. N. Bryan. A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography 20: 88–97, 1996.

    Article  Google Scholar 

  • C. Davatzikos and S. M. Resnick. Sex differences in anatomic measures of interhemispheric connectivity: correlations with cognition in men but not in women. Cerebral Cortex 8: 635–640, 1998.

    Article  Google Scholar 

  • J. C. Bezdek, L. O. Hall and L. P. Clarke. Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20(4): 1033–1048, 1993.

    Article  Google Scholar 

  • A. F. Goldszal, C. Davatzikos, D. Pham, M. Yan, R. N. Bryan and S. M. Resnick. An image processing protocol for the analysis of MR images from an elderly population. Journal of Computer Assisted Tomography 1997 (to appear).

    Google Scholar 

  • P. Thompson and A. W. Toga. Visualization and mapping of anatomic abnormalities using a probabilistic brain atlas based on random fluid transformations. Vis. in Biom. Comp., Lecture Notes in Comp. Sci., 383–392, 1996.

    Google Scholar 

  • S. H. J. Whitehead, R. N. Bryan, S. Letovsky, C. Paik, J. Miller and J. Gerber. A database for brain structure/function analysis. Proc. of the Am. Soc. of Neuroradiology Conf. 166, 1994.

    Google Scholar 

  • S. I. Letovsky, S. H. J. Whitehead, C. H. Paik, G. A. Miller, J. Gerber, E. H. Herskovits, T. K. Fulton and R. N. Bryan. A brain image database for structure/function analysis. Am. J. of Neuroradiology, 1998. (in press).

    Google Scholar 

  • C. A. Pelizzari, G. T. Y Chen, D. R. Spelbring, R. R. Weichselbaum and C. T. Chen. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. Journal of Computer Assisted Tomography 13(1): 20–26, 1989.

    Article  Google Scholar 

  • R. Woods, S. Cherry and J. Mazziota. Rapid automated algorithm for aligning and reslicing PET images. Journal of Computer Assisted Tomography 16: 1–14, 1992.

    Article  Google Scholar 

  • W. E. L. Grimson, G. J. Ettinger, S. J. White, T. Lozano-Perez, W. M. Wells III and R. Kikinis. An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Transactions on Medical Imaging 15: 129–140, 1996.

    Article  Google Scholar 

  • K. Brodman. Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig, 1908.

    Google Scholar 

  • M. Vaillant, C. Davatzikos, R. H. Taylor and R. N. Bryan. A path-planning algorithm for image guided neurosurgery. Proceedings of CVRMed II–MRCAS III, 467–476, 1997.

    Google Scholar 

  • H. Metz, J. McElhaney and A. K. Ommaya. A comparison of the elasticity of live, dead, and fixed brain tissue. Journal of Biomechanics 3: 453–458, 1970.

    Article  Google Scholar 

  • K. B. Sahay, R. Mehrotra, U. Sachdeva and A. K. Banerji. Elastomechanical characterization of brain tissues. Journal of Biomechanics 25: 319–326, 1992.

    Article  Google Scholar 

  • K. K. Mendis, R. Stalnaker and S. H. Advani. A constitutive relationship for large-deformation finite-element modeling of brain-tissue. Journal of Biomechanical Engineering Transactions of the ASME 117: 279–285, 1995.

    Article  Google Scholar 

  • S. K. Kyriacou and C. Davatzikos. A biomechanical model of soft tissue deformation, with applications to nonrigid registration of brain images with tumor pathology. Proceedings of the MICCAI’98, 1998 (to appear).

    Google Scholar 

  • S. K. Kyriacou, C. Davatzikos, S. J. Zinreich and R. N. Bryan. Modeling brain pathology and tissue deformation using a finite element based nonlinear elastic models. IEEE Transactions on Medical Imaging, 1997 (submitted).

    Google Scholar 

  • H. Takizawa, K. Sugiura, M. Baba and J. D. Miller. Analysis of intracerebral hematoma shapes by numerical computer simulation using the finite element method. Neurologia Medico-Chirurgica 34: 65–69, 1994.

    Article  Google Scholar 

  • R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca and R. L. Ehman. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269: 1854–1857, 1995.

    Article  Google Scholar 

  • R. Kikinis et. al. A digital brain atlas for surgical planning, model driven segmentation and teaching. IEEE Transactions on Visualization and Computer Graphics 2: 1996.

    Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Computational Neuroanatomy Using Deformable Neuroanatomical Models: Applications in Brain Imaging. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics