Skip to main content

Techniques and Applications of Three Dimensional Blood Flow through Arterial Structures

  • Reference work entry
Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems
  • 598 Accesses

17.1 1.1 Introduction

Occlusive arterial disease is one of the chief causes of death in most of the western world. A narrowing or stenosis in an artery would almost invariably interfere with the proper flow of blood in the vessel, producing regions of high fluid stress, elevated wall shear stress and recirculation of flow. These flow conditions may eventually cause serious pathological problems such as endothelial damage, hemolysis, thrombosis and other injury within the artery. Thus, it is not surprising that the study of blood flow through stenosed arteries has been the subject of numerous studies in the past few decades.

However, despite the vast amount of studies carried out in this area, the causes of arterial stenoses remain largely unknown. Many studies employing epidemiological techniques have been performed to determine the factors associated with arterial diseases. Factors such as age, sex, cigarette smoking, hypertension and high cholesterol level have been identified as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • K.C. Ang and J.N. Mazumdar. Mathematical and Computer Modelling 25: 19–29, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  • K.C. Ang, J.N. Mazumdar and I. Hamilton Craig. Australasian Physical & Engineering Sciences in Medicine 20: 152–163, 1997.

    Google Scholar 

  • M. Texon. Atherosclerosis and its Origins, 167–195, 1963.

    Google Scholar 

  • D.A. McDonald. Blood Flow in Arteries, 2nd edn. Edward Arnold, London, 1960.

    Google Scholar 

  • J.N. Mazumdar. Biofluid Mechanics. World Scientific Publishing, Singapore, 1992.

    MATH  Google Scholar 

  • P.J. Roache. Computational Fluid Dynamics. Hermosa Albuquerque, New Mexico, 1976.

    Google Scholar 

  • C.A. J. Fletcher. Computational Techniques for Fluid Dynamics I: Fundamental and General Techniques. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  • A.S. Dvinsky and M. Ojha. Medical & Biological Engineering & Computing 32: 138–142, 1994.

    Article  Google Scholar 

  • D.F. Young. Journal of Engineering for Industry, ASME 90: 248–254, 1968.

    Article  Google Scholar 

  • R.M. Nerem. Journal of Biomechanical Engineering, ASME 114: 274–282, 1992.

    Article  Google Scholar 

  • D.L. Fry. Circulation Research 22: 165–197, 1968.

    Article  Google Scholar 

  • D.F. Young and F.Y. Tsai. Journal of Biomechanics 6: 395–410, 1968.

    Article  Google Scholar 

  • U. Dinnar. Cardiovascular Fluid Dynamics, pp. 87. CRC Press, Florida, 1981.

    MATH  Google Scholar 

  • P.R. Johnston and D. Kilpatrick. Computers in Cardiology, 229–232M, 1991.

    Google Scholar 

  • L.H. Back, T.K. Liem, E.Y. Kwack and D. W. Crawford. Journal of Biomechanical Engineering 114: 232–240, 1992.

    Article  Google Scholar 

  • B.E. Morgan and D.F. Young. Bulletin of Mathematical Biology 36: 39–53, 1974.

    MATH  Google Scholar 

  • R.M. Nerem and J.F. Cornhill. Journal of Biomechanical Engineering, ASME 102: 181–189, 1980.

    Article  Google Scholar 

  • H.N. Sabbah, F.J. William and P.D. Stein. Journal of Biomechanical Engineering, ASME 106: 272–279, 1984.

    Article  Google Scholar 

  • S.A. Altobelli and R.M. Nerem. Journal of Biomechanical Engineering, ASME 107: 16–23, 1985.

    Article  Google Scholar 

  • K. Perktold, R.M. Nerem and R.O. Peter. Journal of Biomechanics 24: 175–189, 1991.

    Article  Google Scholar 

  • N. Padmanabhan and G. Jayaraman. Medical & Biological Engineering & Computing 22: 261–224, 1984.

    Article  Google Scholar 

  • T. Asakura and T. Karino. Circulation Research 66: 1045–1066, 1990.

    Article  Google Scholar 

  • A.E. Becker and R. H. Anderson. Cardiac Pathology-An Integrated Text and Colour Atlas, pp. 3.4. Gower Medical Publishing, Edinburgh, 1983.

    Google Scholar 

  • N. Padmanabhan and R. Devanathan. Medical & Biological Engineering & Computing 19: 386–390, 1981.

    Article  Google Scholar 

  • L. Talbort and K. O. Gong. Journal of Fluid Mechanics 127: 1–25, 1983.

    Article  Google Scholar 

  • T.J. Pedley. The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, U.K., 1980.

    Book  MATH  Google Scholar 

  • S.A. Berger, L. Talbort and L.S. Yao. Annual Review of Fluid Mechanics 15: 461–512, 1983.

    Article  Google Scholar 

  • K.C. Ang. A Computational Fluid Dynamic Study of Blood Flow Through Stenosed Arteries, PhD Thesis, University of Adelaide, 1996.

    Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Techniques and Applications of Three Dimensional Blood Flow through Arterial Structures. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics