Skip to main content
  • 564 Accesses

12.1 3.1 Introduction

A wound can be defined as a disruption of unity in the body where tissue is damaged by a cut or by a tear. The process of repairing a wound is rather complex and it involves many different types of cells. Wound healing has been most closely studied in the skin, which is the largest organ with the most obvious function to protect the body from infectious organisms and toxic chemicals.

Mammalian skin is made up of three regions: the epidermis, the dermis, and the subcutaneous tissue [39,45]. The simplest situation of a wound occurring on the skin is created by a cut through the epidermis into the dermis [39]. The epidermis consists of several layers of cells interlocked into a tight membrane that covers the entire skin surface. The surface cells of the skin, called keratinocytes, have the capacity to protect the skin. These cells eventually die and come off the skin surface, but the cells at the bottom layer of the epidermis go through mitosis to renew the cells...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • J. A. Adam. Lecture Notes in Pure and Applied Mathematics. Proceedings: Mathematical population dynamics, Marcel Dekker, Vol. 131, pp. 625–642, 1991.

    Google Scholar 

  • B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson. The Molecular Biology of the Cell, Garland Publ. Inc., New York, 1989.

    Google Scholar 

  • W. D. Appling, W. R. O’Brien, D. A. Johnston and M. Duvie. FEBS Lett. 250: 541–544, 1989.

    Article  Google Scholar 

  • F. Arnold and D. C. West. Pharm. Ther. 52: 407–422, 1991.

    Article  Google Scholar 

  • Y. Barrandon and H. Green. Cell 50: 1131–1137, 1987.

    Article  Google Scholar 

  • J. B. Bassingthwaighte, L. S. Liebovitch and B. J. West. Fractal Physiology, Oxford University Press, New York, 1994.

    Google Scholar 

  • N. T. Bennet and G. S. Schultz. Am. J. Surg. 166: 74–81, 1993.

    Article  Google Scholar 

  • J. Bereiter-Hahn. Epidermal Cell Migration and Wound Repair. Bereiter-Hahn, J., Matoltsy, A. G. and Richards, K. S. (Eds), Springer, Berlin, Heidelberg, New York; Biology of the Integument, Vol 2, Vertebrates, pp. 443–471, 1986.

    Google Scholar 

  • J. V. Boykin and J. A. Molnar. Burn Scar and Skin Equivalents. In: I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds), Wound Healing: Biochemical and Clinical Aspects. Saunders, Philadelphia, pp. 523–540, 1992.

    Google Scholar 

  • R. K. Brazell, M. E. Stern, J. V. Aquavella. R. W. Beuerman and L. Baird. Invest. Ophthalmol. Vis. Sci. 32: 336–340, 1991.

    Google Scholar 

  • W. S. Bullough. Repair and Regeneration. pp. 35–46. J. E. Dunphy and W. Van Winkle (Eds). McGraw-Hill, New York, 1969.

    Google Scholar 

  • W. S. Bullough. Cell Replacement after Tissue Damage. In: C. Illingworth (Ed.), Wound Healing Churchill, London, pp. 43–59, 1966.

    Google Scholar 

  • A. Bunde and S. Havlin (Eds). Fractals and Disordered Systems, Springer Verlag, New York, 1992.

    Google Scholar 

  • R. A. F. Clark. Am. J. Med. Sci. 306: 42–48, 1993.

    Article  Google Scholar 

  • R. A. F. Clark. Curr. Op. Cell Biol. 1: 1000–1008, 1989.

    Article  Google Scholar 

  • R. A. F. Clark. Overview and general considerations of wound repair. In: R. A. F. Clark, P. M. Henson (Eds), The Molecular and Cellular Biology of Wound Repair, pp. 3–34. Plenum Press, New York, 1988.

    Google Scholar 

  • W. J. Cliff. Philos. Trans. R. Soc. London B. 246: 305–325, 1963.

    Article  Google Scholar 

  • C. E. Crosson, S. D. Klyce and R. W. Beuerman. Invest. Ophthalmol. Vis. Sci. 27: 464–473, 1986.

    Google Scholar 

  • P. D. Dale, J. A. Sherratt and P. K. Maini. Bull. Math. Biol. 59: 1077–1100, 1997.

    Article  MATH  Google Scholar 

  • P. D. Dale, J. A. Sherratt and P. K. Maini. Appl. Math. Lett. 7: 11–14, 1994.

    Article  MATH  Google Scholar 

  • P. D. Dale, P. K. Maini and J. A. Sherratt. Mathematical Biosciences 124: 127–147, 1994.

    Article  MATH  Google Scholar 

  • J. M. Davidson and K. N. Broadley. Ann. New York Acad. Sci. 638: 306–315, 1991.

    Article  Google Scholar 

  • R. B. Dickinson and R. T. Tranquillo. J. Math. Bio. 31: 564–600, 1993.

    Article  Google Scholar 

  • G. A. Dunn and G. W. Ireland. Nature 312: 63–65, 1984.

    Article  Google Scholar 

  • M. Eisinger, S. Sadan, R. Soehnchen and I. A. Silver, Wound healing by epidermal-derived factors: experimental and preliminary chemical studies. In: A. Barbul, E. Pines, M. Caldwell and T. K. Hunt (Eds), Growth Factors and Other Aspects of Wound Healing, pp. 291–302. Alan R. Liss, New York, 1988a.

    Google Scholar 

  • M. Eisinger, S. Sadan, I. A. Silver and R. B. Flick. Proc. Natn. Acad. Sci. U.S.A. 85: 1937–1941, 1988b.

    Article  Google Scholar 

  • J. Folkman and A. Moscona. Nature 273: 345–349, 1978.

    Article  Google Scholar 

  • F. Fremuth. Acta Univ. Carol. Mongr. 110, 1984.

    Google Scholar 

  • G. Gabbiani. Kidney Int. 41: 530–532, 1992.

    Article  Google Scholar 

  • G. R. Grotendorst. Chemoattractant and growth factors. In: I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds), Wound Healing: Biochemical and Clinical Aspects, pp. 237–246. Saunders, Philadelphia, 1992.

    Google Scholar 

  • O. H. Iversen. Virchows Arch. B Cell Path. 27: 229–235, 1978.

    Google Scholar 

  • R. S. Kirsner and W. H. Eaglstein. Dermatol. Clin. 11: 629–640, 1993.

    Google Scholar 

  • D. M. Knighton, I. A. Silver and T. K. Hunt. Surgery 90: 262–270, 1981.

    Google Scholar 

  • T. Kuwabara, D. G. Perkins and D. G. Cogan. Invest. Ophthalmol. Vis. Sci. 15: 4–14, 1976.

    Google Scholar 

  • R. Y. Lin, K. M. Sullivan, P. A. Argenta, M. Meuli, H. P. Lorenz and N. S. Adzick. Annal Surg. 222: 146–154, 1995.

    Article  Google Scholar 

  • S. A. Maggelakis. Modeling the Effects of Angiogenic Factors on Tumor-related Angiogenesis and Vascularization: a review. To appear in Proceedings: Mathematical Models in Medical and Health Sciences, Vanderbilt University Press, 1999.

    Google Scholar 

  • F. Marks. Natn. Cancer Inst. Monogr. 38: 79–90, 1973.

    Google Scholar 

  • P. Martin, J. Hopkinson-Woolley and J. McCluskey. Progr. Growth Factor Res. 4: 25–44, 1992.

    Article  Google Scholar 

  • B. A. Mast. The skin. In: I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds), Wound Healing: Biochemical and Clinical Aspects, pp. 344–355. Saunders, Philadelphia, 1992.

    Google Scholar 

  • E. H. Mercer. Brit. Med. Bull. 18: 187–192, 1962.

    Google Scholar 

  • J. C. Murray and S. R. Pinnell. Keloids and excessive dermal scarring. In: I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds), Wound Healing: Biochemical and Clinical Aspects, pp. 500–509. Saunders, Philadelphia, 1992.

    Google Scholar 

  • J. D. Murray. Mathematical Biology, Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  • J. Niinikoski, C. Heughan and T. K. Hunt. Surg. Gyn. Obst. 133: 1003–1007, 1971.

    Google Scholar 

  • G. Odland and R. Ross. J. Cell Biol. 39: 135–151, 1968.

    Article  Google Scholar 

  • G. Odland. Structure of the skin. In: L. A. Goldsmith (Ed.), Physiology, Biochemistry and Molecular Biology of the Skin. pp. 3–62. Oxford University Press, New York, 1991.

    Google Scholar 

  • Y. Ohashi, M. Morokura, Y. Kinoshita, T. Mano, H. Watanabe, S. Kinoshita, R. Manabe, K. Oshiden and C. Yanaihara. Invest. Ophthalmol. Vis. Sci. 30: 1879–1882, 1989.

    Google Scholar 

  • L. Olsen, J. A. Sherratt and P. K. Maini. J. Theor. Biol. 177: 113–128, 1995.

    Article  Google Scholar 

  • N. Paweletz and M. Knierim. Critical Reviews in Oncology/Hematology 9: 197–242, 1989.

    Article  Google Scholar 

  • G. Pettet. M. A. J. Chaplain, D. L. S. McElwain and H. M. Byrne. Proc. R. Soc. Lond. B. 263: 1487–1493, 1996.

    Article  Google Scholar 

  • G. F. Pierce, D. Brown and T. A. Mustoe. J. Lab. Clin. Med. 117: 373–382, 1991.

    Google Scholar 

  • M. Plischke and Z. Racz. Phys. Rev. Lett. 53: 415–418, 1984.

    Article  Google Scholar 

  • P. J. Polverini, R. S. Cotran, M. A. Gimbrone Jr. and E. R. Unanue. Nature, London 269: 804–806, 1977.

    Article  Google Scholar 

  • R. Rudolph, J. Vande Berg and H. P. Ehrlich. Wound contraction and scar contracture. In: I. K. Cohen, R. F. Diegelmann and W. J. Lindblad (Eds), Wound Healing: Biochemical and Clinical Aspects, pp. 96–114. Saunders, Philadelphia, 1992.

    Google Scholar 

  • A. E. Savakis and S. A. Maggelakis. Math. Comput. Modelling 25: 1–6, 1997.

    Article  MATH  Google Scholar 

  • A. E. Savakis and S. A. Maggelakis. Society for Industrial and Applied Mathematics (SIAM) Annual Meeting, Toronto, Canada (1998).

    Google Scholar 

  • G. I. Schoefl. Virchows Arch. Pathol. Anat. 337: 97–141, 1963.

    Article  Google Scholar 

  • H. Seppa, G. Grotendorst, S. Seppa, E. Schiffmann and G. R. Martin. J. Cell. Biol. 92: 584–588, 1982.

    Article  Google Scholar 

  • M. Shah, D. M. Foreman and M. W. J. Ferguson. J. Cell Sci. 107: 1137–1157, 1994.

    Google Scholar 

  • J. A Sherratt and J. D. Murray. J. Math. Biol. 29: 389–404, 1991.

    Article  MATH  Google Scholar 

  • J. A Sherratt and J. D. Murray. Proc. R. Soc. Lond. B 241: 29–36, 1990.

    Article  Google Scholar 

  • M. M. Sholley, G. P. Ferguson, H. R. Seibel, J. L. Montour, and J. D. Wilson. Lab. Invest. 51: 624–634, 1984.

    Google Scholar 

  • O. Skalli and G. Gabbiani. The biology of the myofibroblast. Relationship to wound contraction and fibrocontractive diseases. In: R. A. F. Clark and P. M. Henson (Eds), The Molecular and Cellular Biology of Wound Repair, pp. 373–402. Plenum, New York, 1988.

    Chapter  Google Scholar 

  • C. L. Stokes, M. A. Rupnick, S. K. Williams and D. A. Lauffenburger. Lab. Invest. 63: 657–668, 1990.

    Google Scholar 

  • V. P. Terranova, R. Diflorio, R. M. Lyall, S. Hic, R. Friesel and T. Maciag. J. Cell Biol. 101: 2330–2334, 1985.

    Article  Google Scholar 

  • J. P. Trinkaus. Cells into Organs. The Forces that Shape the Embryo. Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

    Google Scholar 

  • J. S. Vande Berg, R. Rudolph, W. L. Poolman and D. R. Disharoon. Lab. Invest. 61: 532–538, 1989.

    Google Scholar 

  • T. Vicsek. Fractal Growth Phenomena, 2nd edition. World Scientific, River Edge, New Jersey, 1991.

    Google Scholar 

  • B. A. Warren. Lab. Invest. 15: 464–473, 1966.

    Google Scholar 

  • G. D Winter. Advan. Biol. Skin 5: 113–127, 1964.

    Google Scholar 

  • N. A. Winter. Epidermal regeneration studied in the domestic pig. In: H. I. Maibach and D. T. Rovee (Eds), Epidermal Wound Healing, pp. 71–112. Year Book Med. Publ., Chicago, 1972.

    Google Scholar 

  • T. A. Witten and L. M. Sander. Diffusion-limited aggregation. Phys. Rev. B 27: 5686–5697, 1981.

    Article  MathSciNet  Google Scholar 

  • H. Zahouani, M. Assoul, P. Janod and J. Mignot. Med. Biol. Eng. Comp. 30: 234–239, 1992.

    Article  Google Scholar 

Download references

Authors

Editor information

Cornelius T. Leondes

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this entry

Cite this entry

Leondes, C.T. (2003). Modeling Techniques in Epidermal Wound Healing. In: Leondes, C.T. (eds) Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-48329-7_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48329-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7110-2

  • Online ISBN: 978-0-306-48329-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics