Skip to main content

The Order Thermococcales and the Family Thermococcaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Thermococcaceae, the only family within the order Thermococcales, consists of three genera, Pyrococcus, Thermococcus, and Palaeococcus. Virtually all have been isolated from hydrothermal marine vents. More than 30 species of Thermococcus and Pyrococcus have been described, and 17 genome sequences are currently available. So far only three Palaeococcus species have been isolated. The three genera are distinguished by their temperature optima for growth, which are typically near 100 °C, 85 °C, and 75 °C for species of Pyrococcus, Thermococcus, and Palaeococcus, respectively. All members of the Thermococcales are strictly anaerobic heterotrophs and are characterized by their ability to grow above 80 °C using peptides and elemental sulfur as the carbon and energy sources. Many are also able to utilize a wide variety of simple and complex carbohydrates. Several species have been extensively studied in terms of their primary metabolic pathways, and genetic systems have been developed for Pyrococcus furiosus and Thermococcus kodakarensis. Some members of the Thermococcales are among the best studied of all of the so-called hyperthermophiles, which are organisms that have an optimum growth temperature of at least 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achenbach-Richter L, Gupta R, Zillig W, Woese CR (1988) Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10:231–240

    CAS  PubMed  Google Scholar 

  • Adams MWW, Holden JF, Menon AL, Schut GJ, Grunden AM et al (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:716–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426

    CAS  PubMed  Google Scholar 

  • Albers SV, Koning SM, Konings WN, Driessen AJ (2004) Insights into ABC transport in archaea. J Bioenerg Biomembr 36:5–15

    CAS  PubMed  Google Scholar 

  • Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003) Palaeococcus heigesonii sp nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179:394–401

    CAS  PubMed  Google Scholar 

  • Andersen MR, Livak KJ, Broomer A, Chen C (2009) Ligation and amplification reactions for determining target molecules, EP Patent 1727913

    Google Scholar 

  • Andronopoulou E, Vorgias CE (2004) Isolation, cloning, and overexpression of a chitinase gene fragment from the hyperthermophilic archaeon Thermococcus chitonophagus semi-denaturing purification of the recombinant peptide and investigation of its relation with other chitinases. Protein Expr Purif 35:264–271

    CAS  PubMed  Google Scholar 

  • Ankenbauer W, Bonch-Osmolovskaya E, Ebenbichler C, Angerer B, Schmitz-Agheguian G et al. (1998) Thermostable nucleic acid polymerase from Thermococcus gorgonarius, United States Patent CA2,267,101

    Google Scholar 

  • Antranikian G, Klingeberg M (1997) Thermostable protease from Thermococcus, United States Patent US005643777A

    Google Scholar 

  • Arab H, Volker H, Thomm M (2000) Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. Int J Syst Evol Microbiol 50(Pt 6):2101–2108

    PubMed  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ et al (2012) H2 production from CO, formate or starch using the hyperthermophilic archaeon Thermococcus onnurineus. Biotechnol Lett 34:75–79

    CAS  PubMed  Google Scholar 

  • Baker SE, Hopkins RC, Blanchette CD, Walsworth VL, Sumbad R et al (2009) Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. J Am Chem Soc 131:7508–7509

    CAS  PubMed  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balint B, Bagi Z, Toth A, Rakhely G, Perei K et al (2005) Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410

    CAS  PubMed  Google Scholar 

  • Barbier G, Godfroy A, Meunier JR, Querellou J, Cambon MA et al (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 49(Pt 4):1829–1837

    CAS  PubMed  Google Scholar 

  • Basen M, Sun J, Adams MW (2012) Engineering a hyperthermophilic archaeon for temperature-dependent product formation. MBio 3:e00053-12

    PubMed Central  PubMed  Google Scholar 

  • Bashir Q, Rashid N, Jamil F, Imanaka T, Akhtar M (2009) Highly thermostable l-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis. J Biochem 146:95–102

    CAS  PubMed  Google Scholar 

  • Bauer MW, Halio SB, Kelly RM (1996a) Proteases and glycosyl hydrolases from hyperthermophilic microorganisms. Adv Protein Chem 48:271–310

    CAS  PubMed  Google Scholar 

  • Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996b) Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271:23749–23755

    CAS  PubMed  Google Scholar 

  • Bauer MW, Bauer SH, Kelly RM (1997) Purification and characterization of a proteasome from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 63:1160–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ et al (1999) An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1– > 3), (1– > 4)-beta-d-glucans and cellulose. J Bacteriol 181:284–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bezsudnova EY, Kovalchuk MV, Mardanov AV, Poliakov KM, Popov VO et al (2009) Overexpression, purification and crystallization of a thermostable DNA ligase from the archaeon Thermococcus sp. 1519. Acta Crystallogr Sect F Structl Biol Cryst Commun 65:368–371

    CAS  Google Scholar 

  • Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Querellou J et al (2011) Pyrococcus yayanosii sp. nov., the first obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61(Pt 12):2827–2831

    CAS  PubMed  Google Scholar 

  • Blamey JM, Adams MWW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta 1161:19–27

    CAS  PubMed  Google Scholar 

  • Blumentals I, Robinson AS, Kelly RM (1990) Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1992–1998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    CAS  PubMed  Google Scholar 

  • Boeke JD, Lacroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    CAS  PubMed  Google Scholar 

  • Bridger SL, Clarkson SM, Stirrett K, Debarry MB, Lipscomb GL et al (2011) Deletion strains reveal metabolic roles for key elemental sulfur responsive proteins in Pyrococcus furiosus. J Bacteriol 193:6498–6504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bridger SL, Lancaster WA, Poole FL 2nd, Schut GJ, Adams MW (2012) Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 194:4097–4106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both alpha-1,4 and alpha-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol 59:2614–2621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bylina EJ, Swanson RV, Mathur EJ, Lam DE (2007) Glycosidase enzymes, United States Patent US7294498 B2

    Google Scholar 

  • Cambon-Bonavita MA, Lesongeur F, Pignet P, Wery N, Lambert C et al (2003) Thermococcus atlanticus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge (corrected). Extremophiles 7:101–109

    CAS  PubMed  Google Scholar 

  • Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48(Pt 4):1181–1185

    PubMed  Google Scholar 

  • Chandrayan SK, Dhaunta N, Guptasarma P (2008) Expression, purification, refolding and characterization of a putative lysophospholipase from Pyrococcus furiosus: retention of structure and lipase/esterase activity in the presence of water-miscible organic solvents at high temperatures. Protein Expr Purif 59:327–333

    CAS  PubMed  Google Scholar 

  • Chandrayan SK, Mcternan PM, Hopkins RC, Sun J, Jenney FE Jr et al (2012) Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase. J Biol Chem 287:3257–3264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Charbonnier F, Erauso G, Barbeyron T, Prieur D, Forterre P (1992) Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol 174:6103–6108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chemnitz Galal W, Pan M, Kelman Z, Hurwitz J (2012) Characterization of DNA primase complex isolated from the Archaeon Thermococcus kodakaraensis. J Biol Chem 287:16209–16219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho Y, Lee HS, Kim YJ, Kang SG, Kim SJ et al (2007) Characterization of a dUTPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in polymerase chain reaction amplification. Mar Biotechnol 9:450–458

    CAS  PubMed  Google Scholar 

  • Cohen GN, Barbe V, Flament D, Galperin M, Heilig R et al (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512

    CAS  PubMed  Google Scholar 

  • Comb DG, Kucera RB (1993) Purified thermostable DNA polymerase obtainable from Thermococcus litoralis. European Patent EP0455430B1

    Google Scholar 

  • Comfort DA, Chou CJ, Conners SB, Vanfossen AL, Kelly RM (2008) Functional-genomics-based identification and characterization of open reading frames encoding alpha-glucoside-processing enzymes in the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 74:1281–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costantino HR, Brown SH, Kelly RM (1990) Purification and Characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105-Degrees-C to 115-Degrees-C. J Bacteriol 172:3654–3660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui Z, Wang Y, Pham BP, Ping F, Pan H et al. (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625

    Google Scholar 

  • Dabrowski S, Kiaer Ahring B (2003) Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif 31:72–78

    CAS  PubMed  Google Scholar 

  • Decker K, Loffert D, Kang J (2012) Thermostable polymerases from Thermococcus pacificus, United States Patent US 8124391 B2

    Google Scholar 

  • Dib R, Chobert JM, Dalgalarrondo M, Barbier G, Haertle T (1998) Purification, molecular properties and specificity of a thermoactive and thermostable proteinase from Pyrococcus abyssi, strain st 549, hyperthermophilic archaea from deep-sea hydrothermal ecosystem. FEBS Lett 431:279–284

    CAS  PubMed  Google Scholar 

  • Dirmeier R, Keller M, Hafenbradl D, Braun FJ, Rachel R et al (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114

    CAS  PubMed  Google Scholar 

  • Dobosy JR, Rose SD, Beltz KR, Rupp SM, Powers KM et al (2011) RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers. BMC Biotechnol 11:80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driskill LE, Kusy K, Bauer MW, Kelly RM (1999) Relationship between glycosyl hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on carbohydrate-based media. Appl Environ Microbiol 65:893–897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du Z, Liu J, Albracht CD, Hsu A, Chen W et al (2011) Structural and mutational studies of a hyperthermophilic intein from DNA polymerase II of Pyrococcus abyssi. J Biol Chem 286:38638–38648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duffaud GD, D’hennezel OB, Peek AS, Reysenbach AL, Kelly RM (1998) Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation. Syst Appl Microbiol 21:40–49

    CAS  PubMed  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B et al (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    CAS  Google Scholar 

  • Farkas J, Chung D, Debarry M, Adams MW, Westpheling J (2011) Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Appl Environ Microbiol 77:6343–6349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farkas J, Stirrett K, Lipscomb GL, Nixon W, Scott RA et al (2012) Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. Appl Environ Microbiol 78:4669–4676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov., represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    CAS  Google Scholar 

  • Fukuda W, Fukui T, Atomi H, Imanaka T (2004) First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 186:4620–4627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda W, Morimoto N, Imanaka T, Fujiwara S (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287:113–120

    CAS  PubMed  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S et al (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima E, Shinka Y, Fukui T, Atomi H, Imanaka T (2007) Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures. J Bacteriol 189:7134–7144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner AF, Kumar S, Perler FB (2012) Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. J Bacteriol 194:2375–2376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G et al (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 185:3888–3894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghasemi A, Salmanian AH, Sadeghifard N, Salarian AA, Gholi MK (2012) Cloning, expression and purification of Pwo polymerase from Pyrococcus woesei. Iran J Microbiol 3:118–122

    Google Scholar 

  • Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguenes G et al (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin. Int J Syst Bacteriol 46:1113–1119

    CAS  PubMed  Google Scholar 

  • Godfroy A, Lesongeur F, Raguenes G, Querellou J, Antoine E et al (1997) Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626

    CAS  PubMed  Google Scholar 

  • Gonnet M, Erauso G, Prieur D, Le Romancer M (2011) pAMT11, a novel plasmid isolated from a Thermococcus sp. strain closely related to the virus-like integrated element TKV1 of the Thermococcus kodakaraensis genome. Res Microbiol 162:132–143

    CAS  PubMed  Google Scholar 

  • Gonzalez JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164

    CAS  PubMed  Google Scholar 

  • Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL et al (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    CAS  PubMed  Google Scholar 

  • Gonzalez JM, Sheckells D, Viebahn M, Krupatkina D, Borges KM et al (1999) Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101

    CAS  PubMed  Google Scholar 

  • Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 14:503–516

    CAS  PubMed  Google Scholar 

  • Grote R, Li L, Tamaoka J, Kato C, Horikoshi K et al (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62

    CAS  PubMed  Google Scholar 

  • Gueguen Y, Voorhorst WG, Van Der Oost J, De Vos WM (1997) Molecular and biochemical characterization of an endo-beta-1,3- glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 272:31258–31264

    CAS  PubMed  Google Scholar 

  • Hagedoorn PL, Driessen MC, Van Den Bosch M, Landa I, Hagen WR (1998)Hyperthermophilic redox chemistry: a re-evaluation. FEBS Lett 440:311–314

    CAS  PubMed  Google Scholar 

  • Hagens S, De Wouters T, Vollenweider P, Loessner MJ (2011) Reporter bacteriophage A511::celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells. Bacteriophage 1:143–151

    PubMed Central  PubMed  Google Scholar 

  • Halio SB, Blumentals I, Short SA, Merrill BM, Kelly RM (1996) Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:2605–2612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halio SB, Bauer MW, Mukund S, Adams MWW, Kelly RM (1997) Purification and characterization of two functional forms of intracellular protease PfpI from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 63:289–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heider J, Mai XH, Adams MWW (1996) Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol 178:780–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holden JF, Baross JA (1993) Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4. J Bacteriol 175:2839–2843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkins RC, Sun J, Jenney FE Jr, Chandrayan SK, Mcternan PM et al (2011)Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PLoS One 6:e26569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber R, Stohr J, Hohenhaus S, Rachel R, Burggraf S et al (1995) Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophillic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264

    CAS  Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T et al (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi T, Tomita H, Yokooji Y, Morikita T, Watanabe B et al (2012) A detailed biochemical characterization of phosphopantothenate synthetase, a novel enzyme involved in coenzyme A biosynthesis in the Archaea. Extremophiles 16:819–828

    CAS  PubMed  Google Scholar 

  • Jia B, Linh LT, Lee S, Pham BP, Liu J et al (2011) Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 15:337–346

    CAS  PubMed  Google Scholar 

  • Jolivet E, L’haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    CAS  PubMed  Google Scholar 

  • Jolivet E, Corre E, L’haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227

    CAS  PubMed  Google Scholar 

  • Jun X, Lupeng L, Minjuan X, Oger P, Fengping W et al (2011) Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193:4297–4298

    PubMed Central  PubMed  Google Scholar 

  • Jung JH, Holden JF, Seo DH, Park KH, Shin H et al (2012a) Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain CL1, isolated from a Paralvinella sp. polychaete worm collected from a hydrothermal vent. J Bacteriol 194:4769–4770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung JH, Lee JH, Holden JF, Seo DH, Shin H et al (2012b) Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deep-sea hydrothermal sulfide chimney on the Juan de Fuca Ridge. J Bacteriol 194:4434–4435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamp RM, Tsunasawa S, Hirano H (1998) Application of new deblocking aminopeptidase from Pyrococcus furiosus for microsequence analysis of blocked proteins. J Protein Chem 17:512–513

    CAS  PubMed  Google Scholar 

  • Kanai T, Matsuoka R, Beppu H, Nakajima A, Okada Y et al (2011) Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 193:3109–3116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kannan Y, Koga Y, Inoue Y, Haruki M, Takagi M et al (2001) Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence. Appl Environ Microbiol 67:2445–2452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawarabayasi Y (2001) Genome of Pyrococcus horikoshii OT3. Methods Enzymol 330:124–134

    CAS  PubMed  Google Scholar 

  • Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S et al (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395

    CAS  PubMed  Google Scholar 

  • Kelley DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491

    CAS  Google Scholar 

  • Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312

    CAS  PubMed  Google Scholar 

  • Killelea T, Connolly BA (2011) Role of disulfide bridges in archaeal family-B DNA polymerases. Chembiochem 12:1330–1336, 1439–4227

    CAS  PubMed  Google Scholar 

  • Kim HW, Ishikawa K (2011) Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots. Biochem J 437:223–230

    CAS  PubMed  Google Scholar 

  • Kim HW, Mino K, Ishikawa K (2008a) Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1169–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008b) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42:356–361

    PubMed  Google Scholar 

  • Kim CS, Pierre B, Ostermeier M, Looger LL, Kim JR (2009a) Enzyme stabilization by domain insertion into a thermophilic protein. Protein Eng Des Sel 22:615–623

    PubMed  Google Scholar 

  • Kim HW, Kashima Y, Ishikawa K, Yamano N (2009b) Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii. Biosci Biotechnol Biochem 73:224–227

    CAS  PubMed  Google Scholar 

  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK et al (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355, 0028–0836

    CAS  PubMed  Google Scholar 

  • Kim KP, Bae H, Kim IH, Kwon ST (2011) Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon Thermococcus celer. Biotechnol Lett 33:339–346

    CAS  PubMed  Google Scholar 

  • Kim BK, Lee SH, Kim SY, Jeong H, Kwon SK et al (2012) Genome sequence of an oligohaline hyperthermophilic archaeon, Thermococcus zilligii AN1, isolated from a terrestrial geothermal freshwater spring. J Bacteriol 194:3765–3766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klages KU, Morgan HW (1994) Characterization of an extremely thermophilic sulfur-metabolizing archaebacterium belonging to the Thermococcales. Arch Microbiol 162:261–266

    CAS  Google Scholar 

  • Kletzin A, Adams MWW (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol 178:248–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klingeberg M, Galunsky B, Sjoholm C, Kasche V, Antranikian G (1995) Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl Environ Microbiol 61:3098–3104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236

    CAS  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034

    CAS  PubMed  Google Scholar 

  • Konig H, Skorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    Google Scholar 

  • Koning SM, Elferink MG, Konings WN, Driessen AJ (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter. J Bacteriol 183:4979–4984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostyukova AS, Gongadze GM, Polosina YY, Bonch-Osmolovskaya EA, Miroshnichenko ML et al (1999) Investigation of structure and antigenic capacities of Thermococcales cell envelopes and reclassification of “Caldococcus litoralis” Z-1301 as Thermococcus litoralis Z-1301. Extremophiles 3:239–245

    CAS  PubMed  Google Scholar 

  • Koutsopoulos S, Van Der Oost J, Norde W (2004) Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability. Langmuir 20:6401–6406

    CAS  PubMed  Google Scholar 

  • Koutsopoulos S, Van Der Oost J, Norde W (2005) Structural features of a hyperthermostable endo-beta-1,3-glucanase in solution and adsorbed on “invisible” particles. Biophys J 88:467–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M et al (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514

    CAS  PubMed  Google Scholar 

  • Kuwabara T, Minaba M, Ogi N, Kamekura M (2007) Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:437–443

    CAS  PubMed  Google Scholar 

  • Lecompte O, Ripp R, Puzos-Barbe V, Duprat S, Heilig R et al (2001) Genome evolution at the genus level: comparison of three complete genomes of hyperthermophilic archaea. Genome Res 11:981–993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK et al (2006a) Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1. Mar Biotechnol 8:425–432

    CAS  PubMed  Google Scholar 

  • Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK et al (2006b) Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1. Appl Environ Microbiol 72:1886–1890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI et al (2006c) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188:2115–2125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HS, Kang SG, Bae SS, Lim JK, Cho Y et al (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HS, Cho Y, Kim YJ, Lho TO, Cha SS et al (2009) A novel inorganic pyrophosphatase in Thermococcus onnurineus NA1. FEMS Microbiol Lett 300:68–74

    CAS  PubMed  Google Scholar 

  • Lee JH, Kang SG, Lee HS, Kim SJ, Kwon KK et al. (2010a) Novel hydrogenases isolated from Thermococcus spp., genes encoding the same, and methods for producing hydrogen using microorganisms having the genes, United States Patent US 2010/0311142 A1

    Google Scholar 

  • Lee JI, Kim YJ, Bae H, Cho SS, Lee JH et al (2010b) Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol 160:1585–1599

    CAS  PubMed  Google Scholar 

  • Lee YG, Kang SG, Lee JH, Kim SI, Chung YH (2010c) Characterization of hyperthermostable fructose-1,6-bisphosphatase from Thermococcus onnurineus NA1. J Microbiol 48:803–807

    CAS  PubMed  Google Scholar 

  • Lee HS, Bae SS, Kim MS, Kwon KK, Kang SG et al (2011) Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J Bacteriol 193:3666–3667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608

    CAS  PubMed  Google Scholar 

  • Lepage E, Marguet E, Geslin C, Matte-Tailliez O, Zillig W et al (2004) Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl Environ Microbiol 70:1277–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim JK, Kang SG, Lebedinsky AV, Lee JH, Lee HS (2010) Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Appl Environ Microbiol 76:6286–6289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipscomb GL, Keese AM, Cowart DM, Schut GJ, Thomm M et al (2009) SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol Microbiol 71:332–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipscomb GL, Stirrett K, Schut GJ, Yang F, Jenney FE Jr et al (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77:2232–2238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Bartlam M, Gao R, Zhou W, Pang H et al (2004) Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii. Biophys J 86:420–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA et al (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus 108:1–6, 0378-1119

    CAS  Google Scholar 

  • Ma K, Adams MW (2001) NAD(P)H:rubredoxin oxidoreductase from Pyrococcus furiosus. Methods Enzymol 334:55–62

    CAS  PubMed  Google Scholar 

  • Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma K, Hutchins A, Sung SJS, Adams MWW (1997) Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci USA 94:9608–9613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mai X, Adams MW (1994) Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem 269:16726–16732

    CAS  PubMed  Google Scholar 

  • Mai X, Adams MW (1996a) Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol 178:5890–5896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mai XH, Adams MWW (1996b) Purification and characterization of two reversible and ADP-dependent acetyl coenzyme a synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:5897–5903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL et al (1999) Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9:608–628

    CAS  PubMed  Google Scholar 

  • Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33

    PubMed Central  PubMed  Google Scholar 

  • Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML et al (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marsic D, Flaman JM, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775–788

    CAS  PubMed  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D et al (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(Pt 2):351–359

    PubMed  Google Scholar 

  • Mathur EJ, Lee E, Bylina E (2004) Thermostable phosphatases, EP Patent 1,488,802

    Google Scholar 

  • Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585:452–458

    CAS  PubMed  Google Scholar 

  • Matsumi R, Atomi H, Imanaka T (2005) Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 187:7072–7080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuno Y, Sugai A, Higashibata H, Fukuda W, Ueda K et al (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73:104–108

    CAS  PubMed  Google Scholar 

  • Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K (2012) Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr Purif 84:265–269

    CAS  PubMed  Google Scholar 

  • Miroshnichenko ML, Bonchosmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA et al (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262

    Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM et al (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48(Pt 1):23–29

    PubMed  Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA et al (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    CAS  PubMed  Google Scholar 

  • Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukund S, Adams MWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase—evidence for its participation in a unique glycolytic pathway. J Biol Chem 266:14208–14216

    CAS  PubMed  Google Scholar 

  • Mukund S, Adams MWW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:8389–8392

    CAS  PubMed  Google Scholar 

  • Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nahalka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223

    CAS  PubMed  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Google Scholar 

  • Nishihara M, Nagahama S, Ohga M, Koga Y (2000) Straight-chain fatty alcohols in the hyperthermophilic archaeon Pyrococcus furiosus. Extremophiles 4:275–277

    CAS  PubMed  Google Scholar 

  • Oger P, Sokolova TG, Kozhevnikova DA, Chernyh NA, Bartlett DH et al (2011) Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. J Bacteriol 193:7019–7020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orita I, Sato T, Yurimoto H, Kato N, Atomi H et al (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188:4698–4704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozawa Y, Nakamura T, Kamata N, Yasujima D, Urushiyama A et al (2005) Thermococcus profundus 2-ketoisovalerate ferredoxin oxidoreductase, a key enzyme in the archaeal energy-producing amino acid metabolic pathway. J Biochem 137:101–107

    CAS  PubMed  Google Scholar 

  • Park JB, Fan CL, Hoffman BM, Adams MW (1991) Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 266:19351–19356

    CAS  PubMed  Google Scholar 

  • Park HS, Kayser KJ, Kwak JH, Kilbane JJ 2nd (2004) Heterologous gene expression in Thermus thermophilus: beta-galactosidase, dibenzothiophene monooxygenase, PNB carboxy esterase, 2-aminobiphenyl-2,3-diol dioxygenase, and chloramphenicol acetyl transferase. J Ind Microbiol Biotechnol 31:189–197

    CAS  PubMed  Google Scholar 

  • Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J et al (2007) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618

    CAS  PubMed  Google Scholar 

  • Pisa KY, Huber H, Thomm M, Muller V (2007) A sodium ion-dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 274:3928–3938

    CAS  PubMed  Google Scholar 

  • Prieur D, Erauso G, Geslin C, Lucas S, Gaillard M et al (2004) Genetic elements of Thermococcales. Biochem Soc Trans 32:184–187

    CAS  PubMed  Google Scholar 

  • Ramos A, Raven N, Sharp RJ, Bartolucci S, Rossi M et al (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robb FT, Park JB, Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase—a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim Biophys Acta 1120:267–272

    CAS  PubMed  Google Scholar 

  • Robb FT, Maeder DL, Brown JR, Diruggiero J, Stump MD et al (2001) Genomic sequence of hyperthermophile Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157

    CAS  PubMed  Google Scholar 

  • Ronimus RS, Reysenbach A, Musgrave DR, Morgan HW (1997) The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248

    CAS  PubMed  Google Scholar 

  • Sakuraba H, Goda S, Ohshima T (2004) Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. Chem Rec 3:281–287

    CAS  PubMed  Google Scholar 

  • Santangelo TJ, Cubonova L, Reeve JN (2008a) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santangelo TJ, Cubonova L, Matsumi R, Atomi H, Imanaka T et al (2008b) Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J Bacteriol 190:2244–2248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santangelo TJ, Cubonova L, Skinner KM, Reeve JN (2009) Archaeal intrinsic transcription termination in vivo. J Bacteriol 191:7102–7108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santangelo TJ, Cubonova L, Reeve JN (2010) Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sapra R, Verhagen MFJM, Adams MWW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schut GJ, Menon AL, Adams MWW (2001) 2-ketoacid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. Methods Enzymol 331:144–158

    CAS  PubMed  Google Scholar 

  • Schut GJ, Brehm SD, Datta S, Adams MWW (2003) Whole genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schut GJ, Boyd ES, Peters JW, Adams MW (2012a) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37(2):182–203

    PubMed  Google Scholar 

  • Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MW (2012b) Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus. Front Microbiol 3:163

    PubMed Central  PubMed  Google Scholar 

  • Schwarz A, Thomsen MS, Nidetzky B (2009) Enzymatic synthesis of beta-glucosylglycerol using a continuous-flow microreactor containing thermostable beta-glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnol Bioeng 103:865–872

    CAS  PubMed  Google Scholar 

  • Shikata K, Fukui T, Atomi H, Imanaka T (2007) A novel ADP-forming succinyl-CoA synthetase in Thermococcus kodakaraensis structurally related to the archaeal nucleoside diphosphate-forming acetyl-CoA synthetases. J Biol Chem 282:26963–26970

    CAS  PubMed  Google Scholar 

  • Silva PJ, Van Den Ban EC, Wassink H, Haaker H, De Castro B et al (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541–6551

    CAS  PubMed  Google Scholar 

  • Sjoholm C, Antranikian G (1997) (Thermococcus) amylase and pullulanase. International Patent Classification C12N 9/26, 9/44

    Google Scholar 

  • Smith ET, Blamey JM, Zhou ZH, Adams MW (1995) A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involved in hydrogen production from pyruvate. Biochemistry 34:7161–7169

    CAS  PubMed  Google Scholar 

  • Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV et al (2004) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323

    CAS  PubMed  Google Scholar 

  • Soler N, Marguet E, Verbavatz JM, Forterre P (2008) Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. Res Microbiol 159:390–399

    CAS  PubMed  Google Scholar 

  • Soler N, Gaudin M, Marguet E, Forterre P (2011) Plasmids, viruses and virus-like membrane vesicles from Thermococcales. Biochem Soc Trans 39:36–44

    CAS  PubMed  Google Scholar 

  • Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW et al (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3′-5′ exonuclease activity. Proc Natl Acad Sci 93:5281–5285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690, 1367–4803

    CAS  PubMed  Google Scholar 

  • Stekhanova TN, Mardanov AV, Bezsudnova EY, Gumerov VM, Ravin NV et al (2010) Characterization of a thermostable short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Appl Environ Microbiol 76:4096–4098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stetter KO (1998) Thermococcus AV4 and enzymes produced by the same, United States Patents US 005714373A

    Google Scholar 

  • Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10:357–362

    PubMed  Google Scholar 

  • Sun J, Hopkins RC, Jenney FE, Mcternan PM, Adams MW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526

    PubMed Central  PubMed  Google Scholar 

  • Tachibana Y, Takaha T, Fujiwara S, Takagi M, Imanaka T (2000) Acceptor specificity of 4-alpha-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J Biosci Bioeng 90:406–409

    CAS  PubMed  Google Scholar 

  • Takacs M, Toth A, Bogos B, Varga A, Rakhely G et al (2008) Formate hydrogenlyase in the hyperthermophilic archaeon Thermococcus litoralis. BMC Microbiol 8:88

    PubMed Central  PubMed  Google Scholar 

  • Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291

    PubMed  Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:1411

    CAS  Google Scholar 

  • Tanaka T, Fukui T, Atomi H, Imanaka T (2003) Characterization of an exo-beta-d-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:5175–5181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T (2004) Concerted action of diacetylchitobiose deacetylase and exo-beta-d-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 279:30021–30027

    CAS  PubMed  Google Scholar 

  • Tanaka T, Takahashi F, Fukui T, Fujiwara S, Atomi H et al (2005) Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J Bacteriol 187:7038–7044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatur J, Hagedoorn PL, Overeijnder ML, Hagen WR (2006) A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 10:139–148

    CAS  PubMed  Google Scholar 

  • Taylor IN, Brown RC, Bycroft M, King G, Littlechild JA et al (2004) Application of thermophilic enzymes in commercial biotransformation processes. Biochem Soc Trans 32:290–292

    CAS  PubMed  Google Scholar 

  • Teske A, Edgcomb V, Rivers AR, Thompson JR, De Vera Gomez A et al (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:905–915

    PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theriot CM, Tove SR, Grunden AM (2009) Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 86:177–188

    PubMed  Google Scholar 

  • Theriot CM, Du X, Tove SR, Grunden AM (2010) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87:1715–1726

    CAS  PubMed  Google Scholar 

  • Tomita H, Yokooji Y, Ishibashi T, Imanaka T, Atomi H (2012) Biochemical characterization of pantoate kinase, a novel enzyme necessary for coenzyme A biosynthesis in the Archaea. J Bacteriol 194:5434–5443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsunasawa S, Nakura S, Tanigawa T, Kato I (1998) Pyrrolidone carboxyl peptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: cloning and overexpression in Escherichia coli of the gene, and its application to protein sequence analysis. J Biochem 124:778–783

    CAS  PubMed  Google Scholar 

  • Van Der Oost J, Schut G, Kengen SW, Hagen WR, Thomm M et al (1998) The ferredoxin-dependent conversion of glyceraldehyde-3-phosphate in the hyperthermophilic archaeon Pyrococcus furiosus represents a novel site of glycolytic regulation. J Biol Chem 273:28149–28154

    PubMed  Google Scholar 

  • Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193:1481–1482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verhagen MF, Menon AL, Schut GJ, Adams MW (2001) Pyrococcus furiosus: large-scale cultivation and enzyme purification. Meths Enzymol 330:25–30

    CAS  Google Scholar 

  • Verhees CH, Kengen SWM, Tuininga JE, Schut GJ, Adams MWW et al (2004) The unique features of glycolytic pathways in Archaea. Biochem J 377:819–822

    CAS  Google Scholar 

  • Voorhorst WG, Gueguen Y, Geerling AC, Schut G, Dahlke I et al (1999) Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers. J Bacteriol 181:3777–3783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waege I, Schmid G, Thumann S, Thomm M, Hausner W (2010) Shuttle vector-based transformation system for Pyrococcus furiosus. Appl Environ Microbiol 76:3308–3313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Gao Z, Xu X, Ruan L (2011) Complete genome sequence of Thermococcus sp. strain 4557, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area. J Bacteriol 193:5544–5545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward DE, Revet IM, Nandakumar R, Tuttle JH, De Vos WM et al (2002a) Characterization of plasmid pRT1 from Pyrococcus sp. strain JT1. J Bacteriol 184:2561–2566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward DE, Shockley KR, Chang LS, Levy RD, Michel JK et al (2002b) Proteolysis in hyperthermophilic microorganisms. Archaea 1:63–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Yuzawa H, Handa N, Kobayashi I (2006) Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Appl Environ Microbiol 72:5367–5375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wery N, Cambon-Bonavita MA, Lesongeur F, Barbier G (2002) Diversity of anaerobic heterotrophic thermophiles isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. FEMS Microbiol Ecol 41:105–114

    CAS  PubMed  Google Scholar 

  • Wheeldon IR, Campbell E, Banta S (2009) A chimeric fusion protein engineered with disparate functionalities-enzymatic activity and self-assembly. J Mol Biol 392:129–142

    CAS  PubMed  Google Scholar 

  • Woodward CA, Kaufman EN (1996) Enzymatic catalysis in organic solvents: polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene. Biotechnol Bioeng 52:423–428

    CAS  PubMed  Google Scholar 

  • Wu X, Kobori H, Orita I, Zhang C, Imanaka T et al (2012) Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD(+) and NADP(+). Biotechnol Bioeng 109:53–62

    CAS  PubMed  Google Scholar 

  • Xavier KB, Martins LO, Peist R, Kossmann M, Boos W et al (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773–4777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J Bacteriol 181:3358–3367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada Y, Fukuda W, Hirooka K, Hiromoto T, Nakayama J et al (2009) Efficient in vitro synthesis of cis-polyisoprenes using a thermostable cis-prenyltransferase from a hyperthermophilic archaeon Thermococcus kodakaraensis. J Biotechnol 143:151–156

    CAS  PubMed  Google Scholar 

  • Yang H, Lipscomb GL, Keese AM, Schut GJ, Thomm M et al (2010) SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch. Mol Microbiol 77:1111–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang TC, Legault S, Kayiranga EA, Kumaran J, Ishikawa K et al (2012) The N-terminal beta-sheet of the hyperthermophilic endoglucanase from Pyrococcus horikoshii is critical for thermostability. Appl Environ Microbiol 78:3059–3067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH et al (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

  • Ying X, Ma K (2011) Characterization of a zinc-containing alcohol dehydrogenase with stereoselectivity from the hyperthermophilic Archaeon Thermococcus guaymasensis. J Bacteriol 193:3009–3019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 284:28137–28145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng X, Zhang X, Jiang L, Alain K, Jebbar M et al (2012) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63(Pt 6):2155–2159

    PubMed  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD (1983) The Archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the Archaebacteria. Syst Appl Microbiol 4:88–94

    CAS  PubMed  Google Scholar 

  • Zivanovic Y, Lopez P, Philippe H, Forterre P (2002) Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30:1902–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guerin P et al (2009) Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radio resistant organism known amongst the Archaea. Genome Biol 10:R70

    PubMed Central  PubMed  Google Scholar 

  • Zona R, Chang F, O’donohue MJ, Janecek S (2004) Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur J Biochem 271:2863–2872

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the US Department of Energy ARPA-E Electrofuels Program (DE-AR0000081 to MWWA and RMK), from the DOE GTL Program (DG-FG02-08ER64687 to RMK), and from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the DOE (DE-FG05-95ER20175 to MWWA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. W. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schut, G.J., Lipscomb, G.L., Han, Y., Notey, J.S., Kelly, R.M., Adams, M.M.W. (2014). The Order Thermococcales and the Family Thermococcaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_324

Download citation

Publish with us

Policies and ethics